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What Happens Why It Happened Why PSM

Trig

Consider y ′ = sin y with
y(0) = π/2.
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What Happens Why It Happened Why PSM

Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.
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Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.

0 1 2 3 4 5 6 7 8 9 10
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

If we let u1 = y , u2 = sin(u1) and u3 = cos(u2), then
u′

1 = u2, u1(0) = π/2;
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Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.
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If we let u1 = y , u2 = sin(u1) and u3 = cos(u2), then
u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1;

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.
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If we let u1 = y , u2 = sin(u1) and u3 = cos(u2), then
u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.
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What Happens Why It Happened Why PSM

Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.
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If we let u1 = y , u2 = sin(u1) and u3 = cos(u2), then
u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.

While three first order odes may appear harder than one, compare
two multiplications to evaluating a sine.
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Trig

Consider y ′ = sin y with
y(0) = π/2.
It has solution
y = 2tan−1(et), which is far
from obvious.
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If we let u1 = y , u2 = sin(u1) and u3 = cos(u2), then
u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.

While three first order odes may appear harder than one, compare
two multiplications to evaluating a sine. In a numerical
solver, do we really need sine to machine precision?
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What Happens Why It Happened Why PSM

Trig Errors

Equal step RKO4 on [0, 10]
with 100, 200 intervals:
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Trig Errors

Equal step RKO4 on [0, 10]
with 100, 200 intervals:
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Matlab’s ode45 on [0, 10],
absolute error 10−6: 85 and 109
function evaluations.

0 1 2 3 4 5 6 7 8 9 10
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

PSM

u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.
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What Happens Why It Happened Why PSM

PSM

u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.

Power Series Method: at t = 0, replace variables by power series,
explicitly find coefficients using Cauchy products and earlier
coefficients (related to AD, Taylor methods).
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PSM

u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.

Power Series Method: at t = 0, replace variables by power series,
explicitly find coefficients using Cauchy products and earlier
coefficients (related to AD, Taylor methods).
Equal step on [0, 10] with 100,
200 intervals:
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What Happens Why It Happened Why PSM

PSM

u′

1 = u2, u1(0) = π/2; u′

2 = u2u3, u2(0) = 1; u′

3 = −u2
2 , u3(0) = 0.

Power Series Method: at t = 0, replace variables by power series,
explicitly find coefficients using Cauchy products and earlier
coefficients (related to AD, Taylor methods).
Equal step on [0, 10] with 100,
200 intervals:
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100 intervals, order 4, 6, 8, 10:
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Arbitrary Power

Consider y ′ = yα, y(0) = y0,
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.
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What Happens Why It Happened Why PSM

Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y ,
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
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What Happens Why It Happened Why PSM

Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3,
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3, u′

3 = −y−2y ′ = −u2
3u2.
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What Happens Why It Happened Why PSM

Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3, u′

3 = −y−2y ′ = −u2
3u2.

In addition, with u4 = u2u3 = yα−1,
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3, u′

3 = −y−2y ′ = −u2
3u2.

In addition, with u4 = u2u3 = yα−1, u′

4 = (α − 1)yα−2y ′

= (α − 1)y2α−2 = (α − 1)u2
4 ,
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3, u′

3 = −y−2y ′ = −u2
3u2.

In addition, with u4 = u2u3 = yα−1, u′

4 = (α − 1)yα−2y ′

= (α − 1)y2α−2 = (α − 1)u2
4 , so we could solve

u′

1 = u2, u′

2 = αu2u4, u′

3 = −u3u4, u′

4 = (α − 1)u2
4 .
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Arbitrary Power

Consider y ′ = yα, y(0) = y0, y =
(

(

t − αt + y1−α
0

)1/(α−1)
)

−1
.

With u1 = y , u2 = yα, u3 = 1/y , we have u′

1 = yα = u2,
u′

2 = αyα−1y ′ = αy2α−1 = αu2
2u3, u′

3 = −y−2y ′ = −u2
3u2.

In addition, with u4 = u2u3 = yα−1, u′

4 = (α − 1)yα−2y ′

= (α − 1)y2α−2 = (α − 1)u2
4 , so we could solve

u′

1 = u2, u′

2 = αu2u4, u′

3 = −u3u4, u′

4 = (α − 1)u2
4 .

Or more simply u′

1 = u1u4, u′

4 = (α − 1)u2
4 .
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Arbitrary Power Errors

Set α = e/2 + i/π, y(0) = 1, 40 intervals on [0, 2], RKO4 with
one, two, three equation versions, PSM on two equation version.
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Arbitrary Power Errors

Set α = e/2 + i/π, y(0) = 1, 40 intervals on [0, 2], RKO4 with
one, two, three equation versions, PSM on two equation version.

Error Magnitude
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Arbitrary Power Errors

Set α = e/2 + i/π, y(0) = 1, 40 intervals on [0, 2], RKO4 with
one, two, three equation versions, PSM on two equation version.

Error Magnitude
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1 eqn RKO4
3 eqns RKO4
2 eqns RKO4
2 eqns PSM

5th order PSM slightly
better than RKO4 with
two equations, twelfth
order gives machine
accuracy (or 100
intervals at eighth order).
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Simple Pendulum

The simple pendulum is θ′′ = − sin θ with θ(0) = θ0, θ′(0) = 0.
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What Happens Why It Happened Why PSM

Simple Pendulum

The simple pendulum is θ′′ = − sin θ with θ(0) = θ0, θ′(0) = 0.
First order system: θ′1 = θ2, θ′2 = − sin θ with θ1(0) = θ0,
θ2(0) = 0.
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What Happens Why It Happened Why PSM

Simple Pendulum

The simple pendulum is θ′′ = − sin θ with θ(0) = θ0, θ′(0) = 0.
First order system: θ′1 = θ2, θ′2 = − sin θ with θ1(0) = θ0,
θ2(0) = 0. Conservation of energy states that (θ′)2/2 − cos θ = C .
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What Happens Why It Happened Why PSM

Simple Pendulum

The simple pendulum is θ′′ = − sin θ with θ(0) = θ0, θ′(0) = 0.
First order system: θ′1 = θ2, θ′2 = − sin θ with θ1(0) = θ0,
θ2(0) = 0. Conservation of energy states that (θ′)2/2 − cos θ = C .

No closed form solution.
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What Happens Why It Happened Why PSM

Simple Pendulum

The simple pendulum is θ′′ = − sin θ with θ(0) = θ0, θ′(0) = 0.
First order system: θ′1 = θ2, θ′2 = − sin θ with θ1(0) = θ0,
θ2(0) = 0. Conservation of energy states that (θ′)2/2 − cos θ = C .

No closed form solution.

Letting u1 = θ, u2 = θ′, u3 = sin θ, u4 = cos θ, then
u′

1 = u2, u′

2 = −u3, u′

3 = u2u4, u′

4 = −u2u3 with u1(0) = θ0,
u2(0) = 0, u3(0) = sin(θ0), u4(0) = cos(θ0).
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Pendulum Errors

500 intervals on [0, 500] angle
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Pendulum Errors

500 intervals on [0, 500] angle
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500 intervals on [0, 500] energy
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Pendulum Errors 2

1000 intervals on [0, 500] energy
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Pendulum Errors 2

1000 intervals on [0, 500] energy
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Pendulum Errors 2

1000 intervals on [0, 500] energy
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10 000 intervals on [0, 500]
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10 000 intervals on [0, 500] ∆e = 2.9 × 10−6.
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Pendulum Errors 2

1000 intervals on [0, 500] energy

0 50 100 150 200 250 300 350 400 450 500
−0.7

−0.68
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−0.54

−0.52

10 000 intervals on [0, 500]
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−0.5403

10 000 intervals on [0, 500] ∆e = 2.9 × 10−6. PSM with order 8
has ∆e = 2.2 × 10−13, and order 12 energy is constant
to machine precision.
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Implications

Runge-Kutta order 4 solutions to polynomial systems have
different error from that of the original system, but function
evaluations can be much faster.
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What Happens Why It Happened Why PSM

Implications

Runge-Kutta order 4 solutions to polynomial systems have
different error from that of the original system, but function
evaluations can be much faster. Not all differential equations
are created equal.
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What Happens Why It Happened Why PSM

Implications

Runge-Kutta order 4 solutions to polynomial systems have
different error from that of the original system, but function
evaluations can be much faster. Not all differential equations
are created equal.

Power Series Method order 4 solutions usually have slightly
more error than Runge-Kutta order 4 solutions for the same
polynomial systems – and usually require more computational
work!
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What Happens Why It Happened Why PSM

Implications

Runge-Kutta order 4 solutions to polynomial systems have
different error from that of the original system, but function
evaluations can be much faster. Not all differential equations
are created equal.

Power Series Method order 4 solutions usually have slightly
more error than Runge-Kutta order 4 solutions for the same
polynomial systems – and usually require more computational
work!

But, the PSM can be made of arbitrary order, and has many
other advantages...
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What Happens Why It Happened Why PSM

Error Analysis, Initial Idea

Euler’s method for y ′ = f (t, y(t)) is yn+1 = yn + h f (tn, yn) with
local error O(h2) and global error O(h).
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What Happens Why It Happened Why PSM

Error Analysis, Initial Idea

Euler’s method for y ′ = f (t, y(t)) is yn+1 = yn + h f (tn, yn) with
local error O(h2) and global error O(h). Typical derivation via

Taylor series: y(t0 + h) = y(t0) + hy ′(t0) + h2

2 y ′′(t0) + O(h3).
Replace y ′(t0) by f (t0, y(t0)), error is h2y ′′(t0)/2 + O(h3), or in
Lagrange form h2y ′′(ξ)/2, ξ ∈ [t0, t0 + h].
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Error Analysis, Initial Idea

Euler’s method for y ′ = f (t, y(t)) is yn+1 = yn + h f (tn, yn) with
local error O(h2) and global error O(h). Typical derivation via

Taylor series: y(t0 + h) = y(t0) + hy ′(t0) + h2

2 y ′′(t0) + O(h3).
Replace y ′(t0) by f (t0, y(t0)), error is h2y ′′(t0)/2 + O(h3), or in
Lagrange form h2y ′′(ξ)/2, ξ ∈ [t0, t0 + h].

Higher order derivations almost always stop here, and leave the
impression that error is proportional to h and depends on
derivatives of y .
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Error Analysis, Initial Idea

Euler’s method for y ′ = f (t, y(t)) is yn+1 = yn + h f (tn, yn) with
local error O(h2) and global error O(h). Typical derivation via

Taylor series: y(t0 + h) = y(t0) + hy ′(t0) + h2

2 y ′′(t0) + O(h3).
Replace y ′(t0) by f (t0, y(t0)), error is h2y ′′(t0)/2 + O(h3), or in
Lagrange form h2y ′′(ξ)/2, ξ ∈ [t0, t0 + h].

Higher order derivations almost always stop here, and leave the
impression that error is proportional to h and depends on
derivatives of y . But (for Euler), since
y ′′(ξ) = ∂f

∂t
(ξ, y(ξ)) + ∂f

∂y
(ξ, y(ξ))f (ξ, y(ξ)), we can relate the error

to the RHS.

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

Error Analysis, Trig

If y ′

i = fi(t, y1(t), y2(t), . . . , yn(t)) for i = 1, 2, . . . , n, errors are
h2y ′′

i (ξi )/2 where y ′′

i (ξi ) = ∂fi
∂t

+
∑n

j=1
∂fi
∂yj

fj .
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Error Analysis, Trig

If y ′

i = fi(t, y1(t), y2(t), . . . , yn(t)) for i = 1, 2, . . . , n, errors are
h2y ′′

i (ξi )/2 where y ′′

i (ξi ) = ∂fi
∂t

+
∑n

j=1
∂fi
∂yj

fj .

y ′ = sin y , error h
2y ′′(ξ) = h

2 cos(ξ) sin(ξ)

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

Error Analysis, Trig

If y ′

i = fi(t, y1(t), y2(t), . . . , yn(t)) for i = 1, 2, . . . , n, errors are
h2y ′′

i (ξi )/2 where y ′′

i (ξi ) = ∂fi
∂t

+
∑n

j=1
∂fi
∂yj

fj .

y ′ = sin y , error h
2y ′′(ξ) = h

2 cos(ξ) sin(ξ)

[u1 = y , u2 = sin y , u3 = cos y ]: u′

1 = u2, u′

2 = u2u3, u′

3 = −u2
2 ,

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

Error Analysis, Trig

If y ′

i = fi(t, y1(t), y2(t), . . . , yn(t)) for i = 1, 2, . . . , n, errors are
h2y ′′

i (ξi )/2 where y ′′

i (ξi ) = ∂fi
∂t

+
∑n

j=1
∂fi
∂yj

fj .

y ′ = sin y , error h
2y ′′(ξ) = h

2 cos(ξ) sin(ξ)

[u1 = y , u2 = sin y , u3 = cos y ]: u′

1 = u2, u′

2 = u2u3, u′

3 = −u2
2 ,

u1 error h
2u2(ξ1)u3(ξ1), u2 error h

2

(

u2
2(ξ2)u3(ξ2) − u3

2(ξ2)
)

,
u3 error −hu2

2(ξ3)u3(ξ3), t0 ≤ ξi ≤ t0 + h.
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Error Analysis, Trig

If y ′

i = fi(t, y1(t), y2(t), . . . , yn(t)) for i = 1, 2, . . . , n, errors are
h2y ′′

i (ξi )/2 where y ′′

i (ξi ) = ∂fi
∂t

+
∑n

j=1
∂fi
∂yj

fj .

y ′ = sin y , error h
2y ′′(ξ) = h

2 cos(ξ) sin(ξ)

[u1 = y , u2 = sin y , u3 = cos y ]: u′

1 = u2, u′

2 = u2u3, u′

3 = −u2
2 ,

u1 error h
2u2(ξ1)u3(ξ1), u2 error h

2

(

u2
2(ξ2)u3(ξ2) − u3

2(ξ2)
)

,
u3 error −hu2

2(ξ3)u3(ξ3), t0 ≤ ξi ≤ t0 + h.

Error in u1 is
h

2
(sin(ξ1) cos(ξ1)) + O(h2).
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Implications of Polynomial Form

Rewriting a system of differential equations in polynomial
form introduces additional variables.
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Implications of Polynomial Form

Rewriting a system of differential equations in polynomial
form introduces additional variables.

Using an nth order solver introduces O(hn) errors in these
terms, which contribute to the O(hn) error in the variables
corresponding to those in the original system.
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Implications of Polynomial Form

Rewriting a system of differential equations in polynomial
form introduces additional variables.

Using an nth order solver introduces O(hn) errors in these
terms, which contribute to the O(hn) error in the variables
corresponding to those in the original system.

The final error is O(hn), but the proportionality constant will
change. It may increase or decrease depending on the
magnitude and sign of the introduced errors.
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Rewriting a system of differential equations in polynomial
form introduces additional variables.

Using an nth order solver introduces O(hn) errors in these
terms, which contribute to the O(hn) error in the variables
corresponding to those in the original system.

The final error is O(hn), but the proportionality constant will
change. It may increase or decrease depending on the
magnitude and sign of the introduced errors.

Polynomial form is superior because the rhs is much more
efficient to evaluate – compare a few of multiplications to
evaluating transcendental functions.
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form introduces additional variables.

Using an nth order solver introduces O(hn) errors in these
terms, which contribute to the O(hn) error in the variables
corresponding to those in the original system.

The final error is O(hn), but the proportionality constant will
change. It may increase or decrease depending on the
magnitude and sign of the introduced errors.

Polynomial form is superior because the rhs is much more
efficient to evaluate – compare a few of multiplications to
evaluating transcendental functions.

Every system of odes can be rewritten in polynomial form in
an algorithmic manner.
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Implications of Polynomial Form

Rewriting a system of differential equations in polynomial
form introduces additional variables.

Using an nth order solver introduces O(hn) errors in these
terms, which contribute to the O(hn) error in the variables
corresponding to those in the original system.

The final error is O(hn), but the proportionality constant will
change. It may increase or decrease depending on the
magnitude and sign of the introduced errors.

Polynomial form is superior because the rhs is much more
efficient to evaluate – compare a few of multiplications to
evaluating transcendental functions.

Every system of odes can be rewritten in polynomial form in
an algorithmic manner. Functions like (et − 1)/t
and (sin t)/t at t = 0 can cause problems.
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Implications of Power Series Method

In all cases so far, PSM order 4 inferior to Runge-Kutta order 4, in
terms of error and computational effort per step.
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Implications of Power Series Method

In all cases so far, PSM order 4 inferior to Runge-Kutta order 4, in
terms of error and computational effort per step.

PSM generates the exact Taylor series of order n expanding at a
given point. Runge-Kutta matches the initial Taylor coefficients,
but has some additional contributions.
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Implications of Power Series Method

In all cases so far, PSM order 4 inferior to Runge-Kutta order 4, in
terms of error and computational effort per step.

PSM generates the exact Taylor series of order n expanding at a
given point. Runge-Kutta matches the initial Taylor coefficients,
but has some additional contributions.

Runge-Kutta is equivalent to an infinite power series, and the
approximate tail is usually better than none at all.
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Implications of Power Series Method

In all cases so far, PSM order 4 inferior to Runge-Kutta order 4, in
terms of error and computational effort per step.

PSM generates the exact Taylor series of order n expanding at a
given point. Runge-Kutta matches the initial Taylor coefficients,
but has some additional contributions.

Runge-Kutta is equivalent to an infinite power series, and the
approximate tail is usually better than none at all.

Computationally, each multiplication in Runge-Kutta requires
Cauchy products in PSM:
(

∞
∑

i=0

aix
i

)(

∞
∑

i=0

bix
i

)

=
∞
∑

i=0





i
∑

j=0

ajbi−j



 x i .
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Why PSM

Every system of odes can be rewritten in polynomial form
algorithmically. Every analytic function can be equivalently
replaced by a system of odes. Every system of polynomial
odes has an equivalent quadratic system of odes.
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Why PSM

Every system of odes can be rewritten in polynomial form
algorithmically. Every analytic function can be equivalently
replaced by a system of odes. Every system of polynomial
odes has an equivalent quadratic system of odes.

A wide range of modeling problems are polynomial odes.
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Why PSM

Every system of odes can be rewritten in polynomial form
algorithmically. Every analytic function can be equivalently
replaced by a system of odes. Every system of polynomial
odes has an equivalent quadratic system of odes.

A wide range of modeling problems are polynomial odes.

Arbitrary order available automatically or adaptively. Can
balance order versus number of intervals to minimize.
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Why PSM

Every system of odes can be rewritten in polynomial form
algorithmically. Every analytic function can be equivalently
replaced by a system of odes. Every system of polynomial
odes has an equivalent quadratic system of odes.

A wide range of modeling problems are polynomial odes.

Arbitrary order available automatically or adaptively. Can
balance order versus number of intervals to minimize.

A priori error estimate available.
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Why PSM (cont’d)

Numerical solution (as a power series) is available for all time,
not just at data points (compare with extrapolation methods).
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Why PSM (cont’d)

Numerical solution (as a power series) is available for all time,
not just at data points (compare with extrapolation methods).

End condition is g(t, y(t)) = 0.
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Why PSM (cont’d)

Numerical solution (as a power series) is available for all time,
not just at data points (compare with extrapolation methods).

End condition is g(t, y(t)) = 0.
Even better, PSM can be used to identify crossing times when
differential equation has discontinuities, like
x ′′ + µx+ − νx− = 0, µ, ν ≥ 0, x+ = max{x , 0},
x− = max{−x , 0}.
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Why PSM (cont’d)

Numerical solution (as a power series) is available for all time,
not just at data points (compare with extrapolation methods).

End condition is g(t, y(t)) = 0.
Even better, PSM can be used to identify crossing times when
differential equation has discontinuities, like
x ′′ + µx+ − νx− = 0, µ, ν ≥ 0, x+ = max{x , 0},
x− = max{−x , 0}.
Makes delay differential equations trivial to solve.
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Why PSM (cont’d)

Numerical solution (as a power series) is available for all time,
not just at data points (compare with extrapolation methods).

End condition is g(t, y(t)) = 0.
Even better, PSM can be used to identify crossing times when
differential equation has discontinuities, like
x ′′ + µx+ − νx− = 0, µ, ν ≥ 0, x+ = max{x , 0},
x− = max{−x , 0}.
Makes delay differential equations trivial to solve.

Arbitrary order means we can easily push to machine accuracy
solutions, regardless of the required precision. For
Hamiltonian systems of odes, we can conserve energy to
machine precision – effectively symplectic.
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Symplectic Methods

A symplectic method numerically approximates a system of odes in
such a way that a first integral, or Hamiltonian, is conserved.
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Symplectic Methods

A symplectic method numerically approximates a system of odes in
such a way that a first integral, or Hamiltonian, is conserved.

Leapfrog integration (Feynman Lectures): To solve x ′ = v ,
v ′ = f (x), xi = xi−1 + vi−1/2∆t, vi+1/2 = vi−1/2 + f (xi )∆t,

Stephen Lucas∗ & James Sochacki Different Differential Equations with the Same Solution



What Happens Why It Happened Why PSM

Symplectic Methods

A symplectic method numerically approximates a system of odes in
such a way that a first integral, or Hamiltonian, is conserved.

Leapfrog integration (Feynman Lectures): To solve x ′ = v ,
v ′ = f (x), xi = xi−1 + vi−1/2∆t, vi+1/2 = vi−1/2 + f (xi )∆t,

or xi+1 = xi + vi∆t + f (xi )
2 ∆t2, vi+1 = vi + 1

2(f (xi) + f (xi+1)∆t.
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Symplectic Methods

A symplectic method numerically approximates a system of odes in
such a way that a first integral, or Hamiltonian, is conserved.

Leapfrog integration (Feynman Lectures): To solve x ′ = v ,
v ′ = f (x), xi = xi−1 + vi−1/2∆t, vi+1/2 = vi−1/2 + f (xi )∆t,

or xi+1 = xi + vi∆t + f (xi )
2 ∆t2, vi+1 = vi + 1

2(f (xi) + f (xi+1)∆t.
It is invariant under time reversal, and “area preserving” in
position/momentum space, and energy is nearly conserved
(periodic).
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Symplectic Methods

A symplectic method numerically approximates a system of odes in
such a way that a first integral, or Hamiltonian, is conserved.

Leapfrog integration (Feynman Lectures): To solve x ′ = v ,
v ′ = f (x), xi = xi−1 + vi−1/2∆t, vi+1/2 = vi−1/2 + f (xi )∆t,

or xi+1 = xi + vi∆t + f (xi )
2 ∆t2, vi+1 = vi + 1

2(f (xi) + f (xi+1)∆t.
It is invariant under time reversal, and “area preserving” in
position/momentum space, and energy is nearly conserved
(periodic).

Forest-Ruth (1990) is fourth order: Given xi , vi : xa = xi + θhvi/2,
va = vi + θhf (xa), xb = xa + (1 − θ)hva/2,
vb = va + (1 − 2θ)hf (xb), xc = xb + (1 − θ)hvb/2,
vi+1 = vb + θhf (xc ), xi+1 = xc + θhvi+1/2 with
θ = 1/(2 − 3

√
2) ≈ 1.35.
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Symplectic Simple Pendulum

10 000 intervals on [0, 500]: energy periodic, range 2.6 × 10−4.
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Symplectic Simple Pendulum

10 000 intervals on [0, 500]: energy periodic, range 2.6 × 10−4.

But actual error:
0 50 100 150 200 250 300 350 400 450 500

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
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Symplectic Issues

More accurate fourth order require more function evaluations,
or are implicit.
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Symplectic Issues

More accurate fourth order require more function evaluations,
or are implicit.

Symplectic solvers for more complicated Hamiltonians can be
very complicated.
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Symplectic Issues

More accurate fourth order require more function evaluations,
or are implicit.

Symplectic solvers for more complicated Hamiltonians can be
very complicated.

(Apparently,) all symplectic algorithms require equal step
sizes.
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Symplectic Issues

More accurate fourth order require more function evaluations,
or are implicit.

Symplectic solvers for more complicated Hamiltonians can be
very complicated.

(Apparently,) all symplectic algorithms require equal step
sizes.

Symplectic methods still have error. Since it is not in the
“energy,” it is in the “phase.”
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form.
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form. Any
numerical method that gives the true solution to machine precision
will conserve energy to machine precision, and hence be effectively
symplectic.
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form. Any
numerical method that gives the true solution to machine precision
will conserve energy to machine precision, and hence be effectively
symplectic. The PSM or any other related method can easily be
effectively symplectic, and is adaptive
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form. Any
numerical method that gives the true solution to machine precision
will conserve energy to machine precision, and hence be effectively
symplectic. The PSM or any other related method can easily be
effectively symplectic, and is adaptive

Simple pendulum example: order twelve, 10 000 intervals on
[0, 500].
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form. Any
numerical method that gives the true solution to machine precision
will conserve energy to machine precision, and hence be effectively
symplectic. The PSM or any other related method can easily be
effectively symplectic, and is adaptive

Simple pendulum example: order twelve, 10 000 intervals on
[0, 500].

Pruett, Ingham & Herman (2011): An adaptive and parallel
implementation of the PSM method for the N-body problem,
currently fastest accurate solver for such problems.
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Effectively Symplectic

We call a numerical method “effectively symplectic” if the energy
is conserved without explicitly using the Hamiltonian form. Any
numerical method that gives the true solution to machine precision
will conserve energy to machine precision, and hence be effectively
symplectic. The PSM or any other related method can easily be
effectively symplectic, and is adaptive

Simple pendulum example: order twelve, 10 000 intervals on
[0, 500].

Pruett, Ingham & Herman (2011): An adaptive and parallel
implementation of the PSM method for the N-body problem,
currently fastest accurate solver for such problems.

Double pendulum: later today!
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Future Work

Using a priori error bound and requested error, identify most
efficient combination of order and interval width for PSM.
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Using a priori error bound and requested error, identify most
efficient combination of order and interval width for PSM.

Automatically converting a system to polynomial form,
minimizing of number of Cauchy products (quadratic terms on
rhs) using “intermediate variables.”
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Using a priori error bound and requested error, identify most
efficient combination of order and interval width for PSM.

Automatically converting a system to polynomial form,
minimizing of number of Cauchy products (quadratic terms on
rhs) using “intermediate variables.”

Automatically dealing with “difficult” functions like
(sin u(t))/u(t) or (eu(t) − 1)/u(t) near u(t) = 0.
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minimizing of number of Cauchy products (quadratic terms on
rhs) using “intermediate variables.”

Automatically dealing with “difficult” functions like
(sin u(t))/u(t) or (eu(t) − 1)/u(t) near u(t) = 0.

A more careful survey of symplectic methods, and comparison
with the PSM.
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Using a priori error bound and requested error, identify most
efficient combination of order and interval width for PSM.

Automatically converting a system to polynomial form,
minimizing of number of Cauchy products (quadratic terms on
rhs) using “intermediate variables.”

Automatically dealing with “difficult” functions like
(sin u(t))/u(t) or (eu(t) − 1)/u(t) near u(t) = 0.

A more careful survey of symplectic methods, and comparison
with the PSM.

Implementation for delay differential equations, piecewise
functions, ...
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Future Work

Using a priori error bound and requested error, identify most
efficient combination of order and interval width for PSM.

Automatically converting a system to polynomial form,
minimizing of number of Cauchy products (quadratic terms on
rhs) using “intermediate variables.”

Automatically dealing with “difficult” functions like
(sin u(t))/u(t) or (eu(t) − 1)/u(t) near u(t) = 0.

A more careful survey of symplectic methods, and comparison
with the PSM.

Implementation for delay differential equations, piecewise
functions, ...

Thank You
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