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Outline

Define Taylor series and issues.

Replace function by “simple” algebraic or differential equations and
use formal series substitution.

Straightforward Examples.

A new Bernoulli number algorithm.

Reciprocals and general powers of functions.

The inverse of a polynomial.
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Taylor Series

Assuming f is sufficiently differentiable,

f(x) = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · ·

+
f (n)(a)

n!
(x − a)n + · · · .
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(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · ·

+
f (n)(a)

n!
(x − a)n + · · · .

In simple cases, derivative are easy to find. In others, it can be
horrendous. For example, if f(x) = sin

√
x2 − 1, then

f (4)(x) = sin
√

x2 − 1
(

x4

(x2−1)2 − 15x4

(x2−1)3 + 18x2

(x2−1)2 − 3
x2−1

)

+ cos
√

x2 − 1
(

6x4

(x2−1)5/2
− 6x2

(x2−1)3/2
− 15x4

(x2−1)7/2
+ 18x2

(x2−1)5/2
− 3

(x2−1)3/2

)

,
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,

and the tenth derivative has 45 terms. Also Maple “hangs” when trying to
solve y′′ = sin(y) using series after about 8 terms.
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An Ode Solution Technique

A first course in differential equations introduces a power series
substitution method for second order linear differential equations of the
from p(x)y′′ + q(x)y′ + r(x)y = f(x), as long as p, q, r, f are sufficiently
simple.
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An Ode Solution Technique

A first course in differential equations introduces a power series
substitution method for second order linear differential equations of the
from p(x)y′′ + q(x)y′ + r(x)y = f(x), as long as p, q, r, f are sufficiently
simple.

The method of Frobenius multiplies each power series by xr to deal with
expansions around regular singular points (e.g. Bessel’s odes).

Almost never seen again, especially when an ode is nonlinear. But, there
is no reason why it can’t be applied to these odes with some alterations,
particularly those whose solution is a function whose Taylor series we
want...
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Solution Approach

The power series substitution method works because the left and right
hand sides can be expanded as power series, and coefficients of
successive powers of x equated.
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The power series substitution method works because the left and right
hand sides can be expanded as power series, and coefficients of
successive powers of x equated.

Returning to finding the Taylor series of f (assuming it is analytic at x = 0),
rewrite y = f(x) as the first order equation y′ = f ′(x) with y(0) = f(0).

Add additional variables and their derivatives in such a way that we get a
system of first order equations of the form Y ′ = F (Y ), where each right
hand side is polynomial in the variables and x. In some cases, we may
multiply both sides of an equation by a power of a variable so that both left
and right hand sides are simple power series.

We call the class of functions that can be formulated in this way
Picardable.
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Why Picardable?

Ed Parker and Jim Sochacki showed that the system Y ′ = F (Y ) where
the right hands sides are polynomial in the variables could be solved as
Taylor series using Picard’s method around a point where the functions
are analytic.
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Why Picardable?

Ed Parker and Jim Sochacki showed that the system Y ′ = F (Y ) where
the right hands sides are polynomial in the variables could be solved as
Taylor series using Picard’s method around a point where the functions
are analytic.

The functions that could be written this way are called projectively
polynomial (pp), and were shown to be a strict subset of the class of
analytic functions.

Later, Paul Warne showed that the same Taylor series could be obtained
by formal power substitution, and David Carothers showed that every pp
system could be rewritten so that only quadratic polynomial terms are
required, so only Cauchy products of power series are needed.

Taylor Without Diff – p. 6/15



Picardable Versus Pp

Consider y = (ex − 1)/x, which is analytic at zero.
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Picardable Versus Pp

Consider y = (ex − 1)/x, which is analytic at zero.

After years of trying, it hasn’t been shown to be pp, but still no proof either
way.

Recently I think I’ve shown J0(x) is not pp. (Ed still needs convincing ⌣̈)

But consider xy′ = 1 − y + z and z′ = z + 1 with y(0) = 1 and z(0) = 0.
Then z = ex − 1 and y = (ex − 1)/x. So y is Picardable (and can be solved
by Picard’s method or power series substitution), while it might not be pp.

Conjecture: Picardable equals those analytic functions whose power
series hold a finite amount of information.
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Some Simple Examples
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• y = sin x satisfies y′′ = −y, or better to add z = cosx, then y′ = z and

z′ = −y with y(0) = 0, z(0) = 1. Let y =
∞
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Then
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So ai = bi−1/i and bi = −ai−1/i. Thus, a1 = 1, b1 = 0, a2 = 0, b2 = −1/2!,
a3 = −1/3!, b3 = 0, a4 = 0, b4 = 1/4! and so on.
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Slightly Less Simple Example

If y = 1/(1 − x) then y′ = 1/(1 − x)2 or y′ = y2 with y(0) = 1.
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If y = 1/(1 − x) then y′ = 1/(1 − x)2 or y′ = y2 with y(0) = 1.

Cauchy product:

(

∞
∑

i=0

aix
i

)(

∞
∑

i=0

bix
i

)

=
∞
∑

i=0

cixi where ci =
i
∑

j=0

ajbi−j .
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∑
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ajbi−j .

a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · · = (1 + a1x + a2x
2 + a3x

3 + · · ·)2.
So a1 = 1, 2a2 = a1 + a1 or a2 = 1, 3a3 = a2 + a2

1 + a2 or a3 = 1,
4a4 = a3 + a1a2 + a2a1 + a3 or a4 = 1 and so on.

Or, (x − 1)y = 1, multiply out the left hand side and equate coefficients to
get the required answer.
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A Difficult Example

If y = tan x then y′ = sec2 x = 1 + tan2 x = 1 + y2 with y(0) = 0.
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So a1 = 1, 2a2 = 0 or a2 = 0, 3a3 = a2
1 or a3 = 1/3, 4a4 = 2a1a2 or a4 = 0,

5a5 = 2a1a3 + a2
2 or a5 = 2/15, 6a6 = 2a1a4 + 2a2a3 or a6 = 0,

7a7 = 2a1a5 + 2a2a4 + a2
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So a1 = 1, 2a2 = 0 or a2 = 0, 3a3 = a2
1 or a3 = 1/3, 4a4 = 2a1a2 or a4 = 0,

5a5 = 2a1a3 + a2
2 or a5 = 2/15, 6a6 = 2a1a4 + 2a2a3 or a6 = 0,

7a7 = 2a1a5 + 2a2a4 + a2
3 or a7 = 17/315 and so on.

For even n, an =
2

n

n/2−1
∑

i=1

aian−i−1, and since by induction ai = 0 for every

even i < n, and one of ai, an−i−1 is even, an = 0.
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1 or a3 = 1/3, 4a4 = 2a1a2 or a4 = 0,

5a5 = 2a1a3 + a2
2 or a5 = 2/15, 6a6 = 2a1a4 + 2a2a3 or a6 = 0,

7a7 = 2a1a5 + 2a2a4 + a2
3 or a7 = 17/315 and so on.

For even n, an =
2

n

n/2−1
∑

i=1

aian−i−1, and since by induction ai = 0 for every

even i < n, and one of ai, an−i−1 is even, an = 0.

For odd n, an =
1

n





(n−3)/2
∑

i=1

2aian−i−1 + a2
(n−1)/2



. Since an = 0 for even

n, there are two cases:
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Tan and Bernoulli Numbers

If n (mod4) ≡ 1 then an =
2

n

(n−1)/4
∑

i=1

a2i−1an−2i,

and if n (mod4) ≡ 3 then an =
1

n





(n−3)/4
∑

i=1

2a2i−1an−2i + a2
(n−1)/2



 .
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n





(n−3)/4
∑

i=1

2a2i−1an−2i + a2
(n−1)/2



 .

But Bernoulli numbers satisfy tan x =
∞
∑

i=1

(−1)i−14i(4i − 1)B2i

(2i)!
x2i−1,
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Tan and Bernoulli Numbers

If n (mod4) ≡ 1 then an =
2

n

(n−1)/4
∑

i=1

a2i−1an−2i,

and if n (mod4) ≡ 3 then an =
1

n





(n−3)/4
∑

i=1

2a2i−1an−2i + a2
(n−1)/2



 .

But Bernoulli numbers satisfy tan x =
∞
∑

i=1

(−1)i−14i(4i − 1)B2i

(2i)!
x2i−1, so

these recurrences give a new set of formulas for finding Bernoulli
numbers.

Taylor Without Diff – p. 11/15



y
′′

= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.
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= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.
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y
′′

= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.

Let c = sin a and d = cos a.
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y
′′

= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.

Let c = sin a and d = cos a.

Then b′ = c,
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y
′′

= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.

Let c = sin a and d = cos a.

Then b′ = c,

c′ = a′ cos a or c′ = bd, with c(0) = sin y0,
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Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.

Let c = sin a and d = cos a.

Then b′ = c,

c′ = a′ cos a or c′ = bd, with c(0) = sin y0,

and d′ = −a′ sin a or d′ = −bc with d(0) = cos y0.
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y
′′

= sin y

Using this approach, consider y′′ = sin y with y(0) = y0, y′(0) = y1.

Let a = y and b = y′, then a′ = b and b′ = sin a with a(0) = y0, b(0) = y1.

Let c = sin a and d = cos a.

Then b′ = c,

c′ = a′ cos a or c′ = bd, with c(0) = sin y0,

and d′ = −a′ sin a or d′ = −bc with d(0) = cos y0.

Taylor series for these four odes are easily found by hand, and symbolic
packages deal with them instantly.
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
.
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
. The initial condition is b(0) =

1

a(0)
.
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
. The initial condition is b(0) =

1

a(0)
.

Let c =
a′

a
, then b′ = −b · c
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
. The initial condition is b(0) =

1

a(0)
.

Let c =
a′

a
, then b′ = −b · c and c′ =

a · a′′ − a′2

a2
=

a′′

a
−

(

a′

a

)2

= ca′′ − c2.
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
. The initial condition is b(0) =

1

a(0)
.

Let c =
a′

a
, then b′ = −b · c and c′ =

a · a′′ − a′2

a2
=

a′′

a
−

(

a′

a

)2

= ca′′ − c2.

The initial condition is c(0) =
a′(0)

a(0)
.

Formal power series substitution immediately gives the Taylor series for b

and c term by term using three Cauchy products.
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Reciprocal of Analytic Functions

Let a(x) be a function with a known Taylor series (perhaps from a system
of polynomial odes). We wish to find the Taylor series of 1/a(x).

Let b =
1

a
, then b′ = −

1

a2
a′ = −

1

a
.
a′

a
. The initial condition is b(0) =

1

a(0)
.

Let c =
a′

a
, then b′ = −b · c and c′ =

a · a′′ − a′2

a2
=

a′′

a
−

(

a′

a

)2

= ca′′ − c2.

The initial condition is c(0) =
a′(0)

a(0)
.

Formal power series substitution immediately gives the Taylor series for b

and c term by term using three Cauchy products.

Alternatively, if b = 1/a then a · b = 1. With a single Cauchy product and
equating coefficients, each bn can be found as a function of a0, a1, . . . , an

and (known) b0, b1, . . . , bn−1.
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Powers of Analytic Functions

Let a(x) be a function whose Taylor series is known (perhaps from a
system of polynomial odes). We wish to find a(x)r for any real r.
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Powers of Analytic Functions

Let a(x) be a function whose Taylor series is known (perhaps from a
system of polynomial odes). We wish to find a(x)r for any real r.

Similarly to before, define b = ar where a has a known Taylor series. Then
let c = 1/a and d = a′/a.
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Let a(x) be a function whose Taylor series is known (perhaps from a
system of polynomial odes). We wish to find a(x)r for any real r.

Similarly to before, define b = ar where a has a known Taylor series. Then
let c = 1/a and d = a′/a.

Then b′ = rar−1a′ = rar ·
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= rb · d with b(0) = (a(0))r.
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Let a(x) be a function whose Taylor series is known (perhaps from a
system of polynomial odes). We wish to find a(x)r for any real r.

Similarly to before, define b = ar where a has a known Taylor series. Then
let c = 1/a and d = a′/a.

Then b′ = rar−1a′ = rar ·
a′

a
= rb · d with b(0) = (a(0))r.

c′ = −
a′

a2
−−

1

a
·
a′

a
= −c · d with c(0) =

1

a(0)
.
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c′ = −
a′

a2
−−

1
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·
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= −c · d with c(0) =

1
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.

d′ =
a · a′′ − a′2

a2
=

a′′

a
−

(

a′

a

)2

= c · a′′ − d2 with d(0) =
a′(0)

a(0)
.
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Powers of Analytic Functions

Let a(x) be a function whose Taylor series is known (perhaps from a
system of polynomial odes). We wish to find a(x)r for any real r.

Similarly to before, define b = ar where a has a known Taylor series. Then
let c = 1/a and d = a′/a.

Then b′ = rar−1a′ = rar ·
a′

a
= rb · d with b(0) = (a(0))r.

c′ = −
a′

a2
−−

1

a
·
a′

a
= −c · d with c(0) =

1

a(0)
.

d′ =
a · a′′ − a′2

a2
=

a′′

a
−

(

a′

a

)2

= c · a′′ − d2 with d(0) =
a′(0)

a(0)
.

Or (Warne) from b′ = rar−1a′, ab′ = rba′, and only two Cauchy products

lead to bn =
1

na0

n
∑

k=1

((r + 1)k − n)akbn−k.
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Inverses of Polynomials(Sochacki & Parker)

Let f(t) =
n+2
∑

i=0

aiti and f(g(t)) = t, so g = f−1.
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f ′(g)g′ = 1.
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n+2
∑
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Let f(t) =
n+2
∑

i=0

aiti and f(g(t)) = t, so g = f−1. Then f(g) = t, or

f ′(g)g′ = 1. Letting y = g′(t), then y = 1/f ′(g).

So y′ =
−1

(f ′(g))2
f ′′(g)g′ = −y2f ′′(g)y.
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So y′ =
−1

(f ′(g))2
f ′′(g)g′ = −y2f ′′(g)y. Let x = y2 and pn = f ′′(g),

then y′ = −xpny, and x′ = 2yy′ = 2y(−xpny) or x′ = −2x2pn.
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f ′′(g)g′ = −y2f ′′(g)y. Let x = y2 and pn = f ′′(g),

then y′ = −xpny, and x′ = 2yy′ = 2y(−xpny) or x′ = −2x2pn.

p′n = f ′′′(g)g′ or p′n = pn−1y with pn−1 = f ′′′(g).
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then y′ = −xpny, and x′ = 2yy′ = 2y(−xpny) or x′ = −2x2pn.

p′n = f ′′′(g)g′ or p′n = pn−1y with pn−1 = f ′′′(g).

p′n−1 = f (4)(g)g′ or p′n−1 = pn−2y with pn−2 = f (4)(g).
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and so on until p′1 = f (n+2)(g)g′
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Inverses of Polynomials(Sochacki & Parker)

Let f(t) =
n+2
∑

i=0

aiti and f(g(t)) = t, so g = f−1. Then f(g) = t, or

f ′(g)g′ = 1. Letting y = g′(t), then y = 1/f ′(g).

So y′ =
−1

(f ′(g))2
f ′′(g)g′ = −y2f ′′(g)y. Let x = y2 and pn = f ′′(g),

then y′ = −xpny, and x′ = 2yy′ = 2y(−xpny) or x′ = −2x2pn.

p′n = f ′′′(g)g′ or p′n = pn−1y with pn−1 = f ′′′(g).

p′n−1 = f (4)(g)g′ or p′n−1 = pn−2y with pn−2 = f (4)(g).

and so on until p′1 = f (n+2)(g)g′ or p′1 = (n + 2)!an+2y.

Finding the Taylor series for the (red) system of odes gives y = g′(t), and
an integration gives the required inverse. Simple (if tedious!)
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