
Computation for fun (not profit)
Stephen Lucas

Department of Mathematics and Statistics

James Madison University, Harrisonburg VA

Continued Fractions – p. 1/35



Introduction

Math 248 introduces us to computer programming to solve problems
in mathematics.
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Introduction

Math 248 introduces us to computer programming to solve problems
in mathematics.

Math 448/449 cover classic topics of Numerical Analysis – solving
equations, interpolation and approximation, numerical differentiation
and integration, numerical linear algebra, numerical solution of
differential equations etc.

But computers programs can aid us in solving a much wider variety of
problems.

Today, we will look at a variety of problems (and their solutions)
associated with continued fractions.
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The Euclidean Algorithm

To find the greatest common divisor of two integers a and b:
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The Euclidean Algorithm

To find the greatest common divisor of two integers a and b:

If a = bq + r, and c is a divisor of both a and b, then it is also a divisor of r.

The Euclidean algorithm for gcd(p, q):

Set a−1 = p, a0 = q.
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The Euclidean Algorithm

To find the greatest common divisor of two integers a and b:

If a = bq + r, and c is a divisor of both a and b, then it is also a divisor of r.

The Euclidean algorithm for gcd(p, q):

Set a−1 = p, a0 = q.

Find bi, ai+1 that satisfy ai−1 = aibi + ai+1 with 0 ≤ ai+1 < ai for
i = 0, 1, . . ..
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The Euclidean Algorithm

To find the greatest common divisor of two integers a and b:

If a = bq + r, and c is a divisor of both a and b, then it is also a divisor of r.

The Euclidean algorithm for gcd(p, q):

Set a−1 = p, a0 = q.

Find bi, ai+1 that satisfy ai−1 = aibi + ai+1 with 0 ≤ ai+1 < ai for
i = 0, 1, . . ..

Until an+1 = 0. The greatest common divisor is then an.
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The Euclidean Algorithm

To find the greatest common divisor of two integers a and b:

If a = bq + r, and c is a divisor of both a and b, then it is also a divisor of r.

The Euclidean algorithm for gcd(p, q):

Set a−1 = p, a0 = q.

Find bi, ai+1 that satisfy ai−1 = aibi + ai+1 with 0 ≤ ai+1 < ai for
i = 0, 1, . . ..

Until an+1 = 0. The greatest common divisor is then an.

If gcd(p, q) = 1, we say p and q are relatively prime.
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Problem #1

For all the positive integers p, q satisfying 0 < p < q ≤ 20, what fraction of
pairs are relatively prime?
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Problem #1

For all the positive integers p, q satisfying 0 < p < q ≤ 20, what fraction of
pairs are relatively prime?

Repeat the calculation for 0 < p < q ≤ 1000.
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Problem #1

For all the positive integers p, q satisfying 0 < p < q ≤ 20, what fraction of
pairs are relatively prime?

Repeat the calculation for 0 < p < q ≤ 1000.

Produce a graph of fraction of relatively prime pairs versus n, the upper
bound on q. Does this suggest something to you about the fraction of
numbers chosen at random that are relatively prime?
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Solution #1

Code for the gcd:
function ret=mygcd(p,q)

while q>0

r=mod(p,q);

p=q;

q=r;

end

ret=p;
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Solution #1

Code for the gcd:
function ret=mygcd(p,q)

while q>0

r=mod(p,q);

p=q;

q=r;

end

ret=p;

Loop through fractions:
count=0;

for q=2:20

for p=1:q-1

if mygcd(p,q)==1

count=count+1;

end

end

end

disp(count)
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Solution #1

Code for the gcd:
function ret=mygcd(p,q)

while q>0

r=mod(p,q);

p=q;

q=r;

end

ret=p;

Loop through fractions:
count=0;

for q=2:20

for p=1:q-1

if mygcd(p,q)==1

count=count+1;

end

end

end

disp(count)

Code returns 127 relatively prime pairs. Total number of pairs is
1 + 2 + 3 + · · · + 19 = 190, since

∑

n

i=1 i = n(n + 1)/2. The fraction is
127/190 ∼ 0.668.
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Solution #1 (cont’d)

Replacing 20 by 1000, 304 191 relatively prime pairs out of 499 500 in total.
The fraction is 304191/499500 ∼ 0.609.
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Solution #1 (cont’d)

Replacing 20 by 1000, 304 191 relatively prime pairs out of 499 500 in total.
The fraction is 304191/499500 ∼ 0.609.

For lots of qs:
y=zeros(1,1000); count=0; total=0;

for q=2:1000

for p=1:q-1

if mygcd(p,q)==1, count=count+1; end

end

total=total+q-1; y(q)=count/total;

end

plot(2:1000,y(2:1000))
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Solution #1 (cont’d)
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Solution #1 (cont’d)
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If you choose two integers at random, the
probability that they are relatively prime is
6/π2 ≈ 0.607927101 · · ·
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Continued Fractions

The iterative step of the Euclidian algorithm can be rewritten as

ai−1

ai

= bi +
1

ai/ai+1
,
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Continued Fractions

The iterative step of the Euclidian algorithm can be rewritten as

ai−1

ai

= bi +
1

ai/ai+1
,

and applied for i = 0, 1, . . . , n to give

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

where b0 is an integer and the bi’s for
i > 0 are positive integers. These
are called partial quotients.
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Continued Fractions

The iterative step of the Euclidian algorithm can be rewritten as

ai−1

ai

= bi +
1

ai/ai+1
,

and applied for i = 0, 1, . . . , n to give

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

where b0 is an integer and the bi’s for
i > 0 are positive integers. These
are called partial quotients.

≡ b0 +
1

b1 +

1

b2 + · · · +
1

bn

≡ [b0; b1, b2, . . . , bn].
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Continued Fraction Algorithm

x0 = p/q.

bi = ⌊xi⌋, xi+1 = 1/(xi − bi) until bn = xn.
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Continued Fraction Algorithm

x0 = p/q.

bi = ⌊xi⌋, xi+1 = 1/(xi − bi) until bn = xn.

function b=cf(p,q)

i=0;

while q~=0

i=i+1; b(i)=floor(p/q);

newp=q; newq=p-b(i)*q; fac=gcd(newp,newq);

p=newp/fac; q=newq/fac;

end
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Problem #2

For each fraction p/q, 0 < p < q ≤ 500 with gcd(p, q) = 1 (verify that there
are 76 115 of them), we can find their continued fraction representations.
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Problem #2

For each fraction p/q, 0 < p < q ≤ 500 with gcd(p, q) = 1 (verify that there
are 76 115 of them), we can find their continued fraction representations.

What is the maximum length of this set of continued fractions?
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Problem #2

For each fraction p/q, 0 < p < q ≤ 500 with gcd(p, q) = 1 (verify that there
are 76 115 of them), we can find their continued fraction representations.

What is the maximum length of this set of continued fractions?

What is the average length of this set of continued fractions?
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Problem #2

For each fraction p/q, 0 < p < q ≤ 500 with gcd(p, q) = 1 (verify that there
are 76 115 of them), we can find their continued fraction representations.

What is the maximum length of this set of continued fractions?

What is the average length of this set of continued fractions?

Which fractions have the form [0; 1, 1, · · · , 1, 2], where the number of
ones could be zero one, two, etc.? Notice anything about them?
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Solution #2 – Code

lenb=0; tot=0; count=0;

for q=2:500

for p=1:q-1

if gcd(p,q)==1

count=count+1; b=cf(p,q); lb=length(b);

if lb>lenb

lenb=lb; bigb=b; bigp=p; bigq=q;

end

tot=tot+lb;

if max(b(2:lb-1)-1)==0 & b(lb)==2, disp([p,q]); end

end

end

end

disp([bigp,bigq,bigb]); disp([tot,count]), disp(tot/count);

Continued Fractions – p. 11/35



Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].
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Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

The average length is 478 265/76 115 ≈ 6.283.
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Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

The average length is 478 265/76 115 ≈ 6.283.

The fractions are 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89,
89/144, 144/233 and 233/377.
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Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

The average length is 478 265/76 115 ≈ 6.283.

The fractions are 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89,
89/144, 144/233 and 233/377. They are ratios of successive Fibonacci
numbers: f1 = 1, f2 = 2 and for n >= 3, fn = fn−1 + fn−2.

Continued Fractions – p. 12/35



Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

The average length is 478 265/76 115 ≈ 6.283.

The fractions are 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89,
89/144, 144/233 and 233/377. They are ratios of successive Fibonacci
numbers: f1 = 1, f2 = 2 and for n >= 3, fn = fn−1 + fn−2.

The gcd algorithm is slowest for successive Fibonacci numbers. Their
continued fraction representations are the longest possible.
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Solution #2 – Results

Maximum length 13 for 233/377 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

The average length is 478 265/76 115 ≈ 6.283.

The fractions are 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89,
89/144, 144/233 and 233/377. They are ratios of successive Fibonacci
numbers: f1 = 1, f2 = 2 and for n >= 3, fn = fn−1 + fn−2.

The gcd algorithm is slowest for successive Fibonacci numbers. Their
continued fraction representations are the longest possible.

Any continued fraction that ends in [· · · , 2] can also be written as ending in
[· · · , 1, 1], so these longest continued fractions can in fact be represented
as strings of ones!
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Irrational Continued Fractions

The Euclidean algorithm leads to a finite continued fraction algorithm for
rationals.
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Irrational Continued Fractions

The Euclidean algorithm leads to a finite continued fraction algorithm for
rationals.

But the same algorithm can be used (indefinitely) for irrationals:

function b=realcf(x,n)

for i=1:n

b(i)=floor(x); x=1/(x-b(i));

end
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Problem #3

Find the continued fraction approximations to ln(x) for
x = 2, 3, 4, . . . , 10 000, with 11 partial quotients, i.e. b0, b1 . . . , b10.

Ignoring the integer part b0, we should have 99990 partial quotients.

What fraction of these partial quotients are ones, two, three, etc. up to
twenties, and what fraction are larger than twenty?
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Solution #3 – Code

count=zeros(21,1);

for i=2:10000

b=realcf(log(i),11);

for j=2:11

if b(j)<=20, count(b(j))=count(b(j))+1;

else, count(21)=count(21)+1;

end

end

end

count=count/sum(count);

fprintf(’%10.6f\n’,count);
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Solution #3 – Results

n Fraction n Fraction

1 0.419602 11 0.010081

2 0.163856 12 0.008991

3 0.089239 13 0.007251

4 0.057856 14 0.006181

5 0.041944 15 0.005621

6 0.030323 16 0.005101

7 0.022982 17 0.004680

8 0.018412 18 0.004470

9 0.015062 19 0.003810

10 0.012071 20 0.003220

> 20 0.069247
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Solution #3 – Results

n Fraction Gauss-Kusmin n Fraction Gauss-Kusmin

1 0.419602 0.415037 11 0.010081 0.010054

2 0.163856 0.169925 12 0.008991 0.008562

3 0.089239 0.093109 13 0.007251 0.007380

4 0.057856 0.058894 14 0.006181 0.006426

5 0.041944 0.040642 15 0.005621 0.005647

6 0.030323 0.029747 16 0.005101 0.005001

7 0.022982 0.022720 17 0.004680 0.004460

8 0.018412 0.017922 18 0.004470 0.004002

9 0.015062 0.014500 19 0.003810 0.003611

10 0.012071 0.011973 20 0.003220 0.003275

> 20 0.069247 0.067114
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Solution #3 – Gauss-Kusmin

The Gauss-Kusmin (or Gauss-Kuzmin) theorem states that almost all
irrationals have continued fractions whose partial quotients obey the rule
that the number n occurs

−
ln

(

1 − 1
(n+1)2

)

ln(2)

of the time.
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Solution #3 – Gauss-Kusmin

The Gauss-Kusmin (or Gauss-Kuzmin) theorem states that almost all
irrationals have continued fractions whose partial quotients obey the rule
that the number n occurs

−
ln

(

1 − 1
(n+1)2

)

ln(2)

of the time.

This assumes we have the full infinite continued fraction. The agreement
for this finite amount of data from the beginning of lots of different
continued fraction is remarkable.
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Continued Fraction Convergents

Turn the problem around: given the continued fraction [b0; b1, b2, . . . , bn],
what rational does it represent?
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Continued Fraction Convergents

Turn the problem around: given the continued fraction [b0; b1, b2, . . . , bn],
what rational does it represent?

The convergents of a continued fraction are the fractions
pk/qk = [b0; b1, b2, . . . , bk] where k ≤ n.

Continued Fractions – p. 18/35



Continued Fraction Convergents

Turn the problem around: given the continued fraction [b0; b1, b2, . . . , bn],
what rational does it represent?

The convergents of a continued fraction are the fractions
pk/qk = [b0; b1, b2, . . . , bk] where k ≤ n.

They satisfy initially

p−1 = 1, q−1 = 0, p0 = b0, q0 = 1,

then

pi = bipi−1 + pi−2 and qi = biqi−1 + qi−2.

for i = 1, 2, . . ..
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Continued Fraction Convergents

Turn the problem around: given the continued fraction [b0; b1, b2, . . . , bn],
what rational does it represent?

The convergents of a continued fraction are the fractions
pk/qk = [b0; b1, b2, . . . , bk] where k ≤ n.

They satisfy initially

p−1 = 1, q−1 = 0, p0 = b0, q0 = 1,

then

pi = bipi−1 + pi−2 and qi = biqi−1 + qi−2.

for i = 1, 2, . . ..

The numerator and denominator of convergents are always relatively
prime, and have a variety of other interesting properties.
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Problem #4

Find the fractions represented by [1; 4, 8, 2, 12, 1] and [2; 103, 1, 1, 2, 1].
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Problem #4

Find the fractions represented by [1; 4, 8, 2, 12, 1] and [2; 103, 1, 1, 2, 1].

The continued fraction for irrationals never finish, and can be
approximated well by convergents. By generating convergents, can
you estimate

[1; 1, 2, 1, 2, 1, 2, . . .],

[2; 4, 4, 4, . . .],

[6; 1, 12, 1, 12, 1, 12 . . .],

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . .], and

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1 . . .]?
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Problem #4

Find the fractions represented by [1; 4, 8, 2, 12, 1] and [2; 103, 1, 1, 2, 1].

The continued fraction for irrationals never finish, and can be
approximated well by convergents. By generating convergents, can
you estimate

[1; 1, 2, 1, 2, 1, 2, . . .],

[2; 4, 4, 4, . . .],

[6; 1, 12, 1, 12, 1, 12 . . .],

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . .], and

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1 . . .]?

Note that the first three are periodic.
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Solution #4 – Code

function x=evalcf(b)

p0=1; p1=b(1); q0=0; q1=1;

for i=2:length(b)

p2=b(i)*p1+p0;

q2=b(i)*q1+q0;

p0=p1; p1=p2; q0=q1; q1=q2;

disp([p1,q1,p1/q1]);

end

x=p1/q1;
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

Continued Fractions – p. 21/35



Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

Continued Fractions – p. 21/35



Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551

=
√

48
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551

=
√

48

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1] = 3.14159265358979
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551

=
√

48

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1] = 3.14159265358979 = π
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551

=
√

48

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1] = 3.14159265358979 = π

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1] = 2.71828182845905
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Solution #4 – Results

[1; 4, 8, 2, 12, 1] = 1172/943 ≃ 1.24284199363733

[2; 103, 1, 1, 2, 1] = 1457/725 ≃ 2.00965517241379

For the next three, increase number of periodic pieces until solution
doesn’t change, or use the digits given. To 15 digits we get

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] =

1.73205080756888 =
√

3

[2; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] = 2.23606797749979 =
√

5

[6; 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12] = 6.92820323027551

=
√

48

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1] = 3.14159265358979 = π

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1] = 2.71828182845905

= e
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Problem #5 –
√

2

It appears square roots have periodic continued fractions. Can you prove√
2 = [1; 2, 2, 2 . . .]?

Continued Fractions – p. 22/35



Problem #5 –
√

2

It appears square roots have periodic continued fractions. Can you prove√
2 = [1; 2, 2, 2 . . .]?

The convergents for
√

2 begin 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169,
577/408, 1393/985.
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Problem #5 –
√

2

It appears square roots have periodic continued fractions. Can you prove√
2 = [1; 2, 2, 2 . . .]?

The convergents for
√

2 begin 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169,
577/408, 1393/985. This ninth convergent is the first where the number of
digits in the numerator exceeds the number of digits in the denominator.
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Problem #5 –
√

2

It appears square roots have periodic continued fractions. Can you prove√
2 = [1; 2, 2, 2 . . .]?

The convergents for
√

2 begin 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169,
577/408, 1393/985. This ninth convergent is the first where the number of
digits in the numerator exceeds the number of digits in the denominator.

In the first one thousand and one convergents, in how many of them does
the numerator have more digits than the denominator?
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Solution #5 – Periodic Solution

√
2 = 1 + (

√
2 − 1)
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Solution #5 – Periodic Solution

√
2 = 1 + (

√
2 − 1) = 1 +

1
1

√

2−1

= 1 +
1

1
√

2−1

√

2+1
√

2+1

= 1 +
1√

2 + 1
.

But √
2 + 1 = 2 + (

√
2 − 1) = 2 +

1
1

√

2−1

√

2+1
√

2+1

= 2 +
1√

2 + 1
.

So
√

2 = [1; 2, 2, 2, . . .].
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Solution #5 – Using Maple

The number of digits in x is ⌊log10(x)⌋ + 1.

Maple allows us to have arbitrarily large fractions (its just sometimes more
difficult to program in than Matlab).

Code:
p(1):=3: q(1):=2: p(2):=7: q(2):=5: count:=0:

for i from 3 to 1000 do

p(i):=2*p(i-1)+p(i-2); q(i):=2*q(i-1)+q(i-2);

if floor(log10(p(i))) > floor(log10(q(i))) then

count:=count+1:

end if

end do;

count;

The solution is 153.
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Problem #6 – Periodic Cont. Fractions

All square roots of non-square numbers lead to periodic continued
fractions.
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Problem #6 – Periodic Cont. Fractions

All square roots of non-square numbers lead to periodic continued
fractions.

Using the overbar notation to indicate the periodic piece, the first few are√
2 = [1; 2],

√
3 = [1; 1 2],

√
5 = [24],

√
6 = [2; 2 4],

√
7 = [2; 1 1 1 4], and so

on.
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Problem #6 – Periodic Cont. Fractions

All square roots of non-square numbers lead to periodic continued
fractions.

Using the overbar notation to indicate the periodic piece, the first few are√
2 = [1; 2],

√
3 = [1; 1 2],

√
5 = [24],

√
6 = [2; 2 4],

√
7 = [2; 1 1 1 4], and so

on.

It turns out that exactly four continued fractions for
√

n have odd period for
n ≤ 13 and non-square. How many continued fractions for

√
n have odd

period for n ≤ 10 000 and non-square?
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Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity.
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Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity. Real arithmetic
would require thousands of digits, but...
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Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity. Real arithmetic
would require thousands of digits, but...

If xi = ai + (bi

√
n + ci)/di,
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√
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Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity. Real arithmetic
would require thousands of digits, but...

If xi = ai + (bi

√
n + ci)/di, then xi+1 =
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bi

√
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=
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n − cidi

b2
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Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity. Real arithmetic
would require thousands of digits, but...

If xi = ai + (bi

√
n + ci)/di, then xi+1 =

di

bi

√
n + ci

=
bidi

√
n − cidi

b2
i
n − c2

i

, which

can be reduced to lowest form and integer part separated.

Continued Fractions – p. 26/35



Solution #6 – Fraction Algorithm

The continued fraction algorithm is x0 =
√

n, then ai = ⌊xi⌋,
xi+1 = 1/(xi − bi), stop when you recognize periodicity. Real arithmetic
would require thousands of digits, but...

If xi = ai + (bi

√
n + ci)/di, then xi+1 =

di

bi

√
n + ci

=
bidi

√
n − cidi

b2
i
n − c2

i

, which

can be reduced to lowest form and integer part separated. With integer
arithmetic, there is no roundoff!
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Solution #6 – Code
function [a,left,right]=sqrtcf(n)

if mod(sqrt(n),1)==0

a=sqrt(n); left=0; right=-1;

else

b(1)=0; c(1)=1; d(1)=1; sn=sqrt(n); done=0; i=0;

while ~done

i=i+1; a(i)=floor((b(i)+c(i)*sn)/d(i));

b(i+1)=(b(i)-a(i)*d(i))*d(i); c(i+1)=-c(i)*d(i);

d(i+1)=(b(i)-a(i)*d(i))^2-c(i)^2*n;

t=gcd(gcd(b(i+1),c(i+1)),d(i+1));

if t>1, b(i+1)=b(i+1)/t; c(i+1)=c(i+1)/t; d(i+1)=d(i+1)/t; end

found=0; j=i+1;

while ~found && j>1

j=j-1; found=(b(i+1)==b(j))&(c(i+1)==c(j))&(d(i+1)==d(j));

end

if found, left=j; right=i; done=1; end

end

end
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Solution #6 – Code
function [a,left,right]=sqrtcf(n)

if mod(sqrt(n),1)==0

a=sqrt(n); left=0; right=-1;

else

b(1)=0; c(1)=1; d(1)=1; sn=sqrt(n); done=0; i=0;

while ~done

i=i+1; a(i)=floor((b(i)+c(i)*sn)/d(i));

b(i+1)=(b(i)-a(i)*d(i))*d(i); c(i+1)=-c(i)*d(i);

d(i+1)=(b(i)-a(i)*d(i))^2-c(i)^2*n;

t=gcd(gcd(b(i+1),c(i+1)),d(i+1));

if t>1, b(i+1)=b(i+1)/t; c(i+1)=c(i+1)/t; d(i+1)=d(i+1)/t; end

found=0; j=i+1;

while ~found && j>1

j=j-1; found=(b(i+1)==b(j))&(c(i+1)==c(j))&(d(i+1)==d(j));

end

if found, left=j; right=i; done=1; end

end

end The solution is 1322.
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Problem #7 –e

The number e has the surprisingly regular continued fraction
[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . 1, 2k, 1, . . .],
surprising because almost all irrational numbers have partial quotients
with no discernable patterns.
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Problem #7 –e

The number e has the surprisingly regular continued fraction
[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . 1, 2k, 1, . . .],
surprising because almost all irrational numbers have partial quotients
with no discernable patterns.

The first few convergents of e are 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39,
193/71, 1264/465 and 1457/536. The sum of the digits in the numerator of
the tenth convergent is 1 + 4 + 5 + 7 = 17.
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Problem #7 –e

The number e has the surprisingly regular continued fraction
[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . 1, 2k, 1, . . .],
surprising because almost all irrational numbers have partial quotients
with no discernable patterns.

The first few convergents of e are 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39,
193/71, 1264/465 and 1457/536. The sum of the digits in the numerator of
the tenth convergent is 1 + 4 + 5 + 7 = 17.

What is the sum of the digits of the numerator of the one hundredth
convergent of e?
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Solution #7

High precision arithmetic is again required. Let’s resort to Maple, concentrating on
the numerator only.

p(1):=2: p(2):=3: p(3):=8: p(4):=11:

for i from 2 to 33 do

j:=3*i-1; p(j):=p(j-1)+p(j-2);

j:=j+1; p(j):=2*i*p(j-1)+p(j-2);

j:=j+1; p(j):=p(j-1)+p(j-2);

end do:

x:=p(100); s:=0:

while x>0 do

s:=s+irem(x,10); x:=iquo(x,10);

end do:

s;
The answer is 272.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.

Consider quadratic Diophantine equations of the form x2 − Dy2 = 1.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.

Consider quadratic Diophantine equations of the form x2 − Dy2 = 1. For
example, when D = 13 the minimal solution in x is 6492 − 13 × 1802 = 1.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.

Consider quadratic Diophantine equations of the form x2 − Dy2 = 1. For
example, when D = 13 the minimal solution in x is 6492 − 13 × 1802 = 1.

There are no solutions when D is a square. The first few minimal
solutions in x for D ≤ 7 are 32 − 2× 22 = 1, 22 − 3× 1 = 1, 92 − 5× 42 = 1,
52 − 6 × 22 = 1 and 82 − 7 × 22 = 1. The largest x for this set is 9, when
D = 5.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.

Consider quadratic Diophantine equations of the form x2 − Dy2 = 1. For
example, when D = 13 the minimal solution in x is 6492 − 13 × 1802 = 1.

There are no solutions when D is a square. The first few minimal
solutions in x for D ≤ 7 are 32 − 2× 22 = 1, 22 − 3× 1 = 1, 92 − 5× 42 = 1,
52 − 6 × 22 = 1 and 82 − 7 × 22 = 1. The largest x for this set is 9, when
D = 5.

Find the value of D ≤ 1000 whose minimal solution in x has the largest
value of x.
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Problem #8 – Diophantine Equations

A Diophantine equation is one where we only look for integer solutions.

Consider quadratic Diophantine equations of the form x2 − Dy2 = 1. For
example, when D = 13 the minimal solution in x is 6492 − 13 × 1802 = 1.

There are no solutions when D is a square. The first few minimal
solutions in x for D ≤ 7 are 32 − 2× 22 = 1, 22 − 3× 1 = 1, 92 − 5× 42 = 1,
52 − 6 × 22 = 1 and 82 − 7 × 22 = 1. The largest x for this set is 9, when
D = 5.

Find the value of D ≤ 1000 whose minimal solution in x has the largest
value of x.

A brute force search is impractical. Can we relate this to continued
fractions?
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Solution #8

This formula is Pell’s equation, and the solution is a convergent of
√

D.
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Solution #8

This formula is Pell’s equation, and the solution is a convergent of
√

D.

Specifically if ar+1 is the first term at which the continued fraction becomes
periodic then (x, y) = (pr, qr) if r is odd, (p2r+1, q2r+1) if r is even.
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Solution #8

This formula is Pell’s equation, and the solution is a convergent of
√

D.

Specifically if ar+1 is the first term at which the continued fraction becomes
periodic then (x, y) = (pr, qr) if r is odd, (p2r+1, q2r+1) if r is even.

So for each D, find the continued fraction of
√

D and its convergents up to
the periodic part (these don’t need to be stored to full accuracy).
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Solution #8

This formula is Pell’s equation, and the solution is a convergent of
√

D.

Specifically if ar+1 is the first term at which the continued fraction becomes
periodic then (x, y) = (pr, qr) if r is odd, (p2r+1, q2r+1) if r is even.

So for each D, find the continued fraction of
√

D and its convergents up to
the periodic part (these don’t need to be stored to full accuracy).

The solution is D = 661 with
x = 164 21658 24296 59102 75055 84047 22704 71049!
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Bounded Continued Fractions

A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.
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Bounded Continued Fractions

A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.

Let F (4) be all the numbers that can be represented as a continued
fraction where each partial quotient (after the first) is 1, 2, 3 or 4.
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A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.

Let F (4) be all the numbers that can be represented as a continued
fraction where each partial quotient (after the first) is 1, 2, 3 or 4.

F (4) is a set of isolated points in the set of all reals – a set of measure
zero.
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Bounded Continued Fractions

A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.

Let F (4) be all the numbers that can be represented as a continued
fraction where each partial quotient (after the first) is 1, 2, 3 or 4.

F (4) is a set of isolated points in the set of all reals – a set of measure
zero.

However, there is a fabulous proof that every real number can be
represented by the sum of two bounded continued fractions from F (4)!
Call this F (4) + F (4).
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Bounded Continued Fractions

A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.

Let F (4) be all the numbers that can be represented as a continued
fraction where each partial quotient (after the first) is 1, 2, 3 or 4.

F (4) is a set of isolated points in the set of all reals – a set of measure
zero.

However, there is a fabulous proof that every real number can be
represented by the sum of two bounded continued fractions from F (4)!
Call this F (4) + F (4).

Unfortunately, it doesn’t give an algorithm on how to find the two
continued fractions given some real.
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Bounded Continued Fractions

A bounded continued fraction is one in which each partial fraction (after
the first) can only be so big.

Let F (4) be all the numbers that can be represented as a continued
fraction where each partial quotient (after the first) is 1, 2, 3 or 4.

F (4) is a set of isolated points in the set of all reals – a set of measure
zero.

However, there is a fabulous proof that every real number can be
represented by the sum of two bounded continued fractions from F (4)!
Call this F (4) + F (4).

Unfortunately, it doesn’t give an algorithm on how to find the two
continued fractions given some real. And, the derivation assumes both
are of infinite length
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Problem #9

So let’s look at a simpler problem – representing rationals.
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So let’s look at a simpler problem – representing rationals.

Generate all the bounded continued fractions in F (4) + F (4) with b0 = 0

and up to n additional partial quotients, and form the set of every possible
sum of two numbers from these sets.
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and up to n additional partial quotients, and form the set of every possible
sum of two numbers from these sets.

Subtract the integer part, leaving the fractional part.
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So let’s look at a simpler problem – representing rationals.

Generate all the bounded continued fractions in F (4) + F (4) with b0 = 0

and up to n additional partial quotients, and form the set of every possible
sum of two numbers from these sets.

Subtract the integer part, leaving the fractional part.

What is the first fraction p/q (in lowest form) that isn’t in this set, where we
order fractions in ascending order in q then p?
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Problem #9

So let’s look at a simpler problem – representing rationals.

Generate all the bounded continued fractions in F (4) + F (4) with b0 = 0

and up to n additional partial quotients, and form the set of every possible
sum of two numbers from these sets.

Subtract the integer part, leaving the fractional part.

What is the first fraction p/q (in lowest form) that isn’t in this set, where we
order fractions in ascending order in q then p?

How does the fraction change an n increases?
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Solution #9

Its actually much faster to consider the fractions (in lowest form) in order
(1/2, 1/3, 2/3, 1/4, 3/4, 1/5, . . .), and in each case split into two fractions
(in order) and check if they are both in F (4)! Identify the best for each
fraction in terms of number of terms.
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Solution #9

Its actually much faster to consider the fractions (in lowest form) in order
(1/2, 1/3, 2/3, 1/4, 3/4, 1/5, . . .), and in each case split into two fractions
(in order) and check if they are both in F (4)! Identify the best for each
fraction in terms of number of terms.

n Fraction

1 1
5 = [0; 4, 1]

2 1
7 = − 4

7 + 5
7 = [−1; 23] + [0; 122]

3 2
13 = − 8

13 + 10
13 = [−1; 2112] + [0; 133]

4 4
23 = − 14

23 + 18
23 = [−1; 2114] + [0; 13112]

5 13
37 = − 16

37 + 29
37 = [0; 11341] + [0; 131112]

6 22
73 = − 80

219 + 2
3 = [−1; 1112144] + [0; 12]

7 51
121 = − 113

143 + 333
1573 = [−1; 41332] + [0; 4121111124]
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Solution #9

Its actually much faster to consider the fractions (in lowest form) in order
(1/2, 1/3, 2/3, 1/4, 3/4, 1/5, . . .), and in each case split into two fractions
(in order) and check if they are both in F (4)! Identify the best for each
fraction in terms of number of terms.

Conjecture:
Any rational can be represented by the sum of two finite elements of F (4).
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Solution #9

Its actually much faster to consider the fractions (in lowest form) in order
(1/2, 1/3, 2/3, 1/4, 3/4, 1/5, . . .), and in each case split into two fractions
(in order) and check if they are both in F (4)! Identify the best for each
fraction in terms of number of terms.

Conjecture:
Any rational can be represented by the sum of two finite elements of F (4).

Unfortunately, the proof is elusive...
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Conclusion

Continued fractions have some lovely properties – consider a course
in number theory.
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many areas of mathematics.
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Conclusion

Continued fractions have some lovely properties – consider a course
in number theory.

Computation can be used to solve (or give insight into) problems in
many areas of mathematics.

As an alternative to classic Numerical Analysis, consider Project
Euler...
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