MATH 235 (SPRING 2014) MIDTERM EXAM

WED MAR 5, 2014

Name:

Attempt all problems. Box your answers.
(1) Find the following limits:
(a) $\lim _{x \rightarrow-\infty} e^{x} \tan ^{-1} x$
(b) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x}$
(c) $\lim _{x \rightarrow \infty}(\sqrt{x}-x)$
(2) Solve the inequality $|3 x-4|<\frac{1}{2}$.
(3) (a) Prove that $\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=\infty$.
(b) Plot the function $\frac{1}{x-2}$ and illustrate the above proof on your graph.
(4) Consider the function

$$
f(x)=\left\{\begin{array}{l}
x-1 \text { if } x \leq 1 \\
\ln (x-1) \text { if } x>1
\end{array}\right.
$$

(a) Find the interval on which f is continuous, and describe the type of any discontinuous it has.
(b) Plot the graph of f.
(c) Choose an interval where the intermediate value theorem for continuous functions applies, in order to deduce that f has a root on that interval. What is that root?
(5) (a) Plot the graph of the rational function $g(x)=\frac{(x+1)(x-2)(x-3)}{(x-2)^{2}(x-3)}$. Clearly label on your graph any horizontal or vertical asymptotes, roots, and holes.
(6) Find the domain of definition of the function $\frac{\sqrt{x-3}}{(x-5)^{2}}$.
(7) Plot the graph of the function $\tan ^{-1}(x)-\pi$. Specify the domain and the range that you chose for your function.

