Math 236 Calculus II (Fall 2014)

Calculus I (Math 235) Basics Review Sheet

Many topics were covered in Calculus I. The following is a review for only the *basic tools and ideas in CalcI* and you should master them *before* taking Calculus II.

H.w. Assignment 1: Solve all the numbered problems, write them very neatly, and submit them in class on Thursday August 28 2014.

1 Functions of One Variable

In Calculus I, we encountered the following types of functions:

- polynomial functions (e.g. $x^3 \frac{1}{3}x + 5, 2x 1$),
- rational functions (e.g. $\frac{2x^3-0.5}{x+4}$),
- algebraic functions (e.g $\sqrt[3]{x^2-1}$),
- trigonometric functions (e.g. $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$),
- inverse trigonometric functions $(\arcsin x, \arccos x, \arctan x, \sec^{-1} x)$ (restrict to an interval where the original trigonometric function is invertible i.e. one-to-one, or passes the horizontal line test, then define the inverse trigonometric function),
- exponential functions (e.g. e^x , 2^x , $\left(\frac{1}{2}\right)^x$),
- logarithmic functions (e.g. $\ln x$, $\log_b x$).

(Review the domains of definitions (denominator $\neq 0$, under the square root ≥ 0 , inside the logarithm > 0, domains and ranges of inverse trigonometric functions, etc.), and careful plotting of these functions.)

1. Find the domains of definition of the following functions:

(a)
$$f(x) = \ln\left(\sqrt{\frac{x-1}{x^2-2x-3}}\right)$$

(b) $g(x) = (0.5)^{x^3-1}$
(c) $h(x) = \sqrt{\sec x}$
(d) $m(x) = 3 \arcsin(x-4)$

2. Match the functions 2^x , x^3 , $\frac{\ln x}{\ln 8}$, $x^{1/3}$ (which is the same as $\sqrt[3]{x}$) to their graphs in Figure 1. Evaluate each of the four functions at x = 13 and explain the order that you see in your answer. Is this order reflected in the given graph? Explain.

Figure 1: Match the functions 2^x , x^3 , $\frac{\ln x}{\ln 8}$, $x^{1/3}$ to their graphs.

2 Limits

Find the following limits (you may need L'Hospital rule to compute some of them). Recall the log, polynomial, and exponential power struggle.

1. $\lim_{x \to -\infty} 2x^3 + x^2 - 7$ 2. $\lim_{x \to -2} \frac{4+2x}{x^2+2x}$ 3. $\lim_{x \to 0} \frac{3\sin x + x}{x}$ 4. $\lim_{x \to -\infty} e^x \tan^{-1} x$ 5. $\lim_{x \to 0} \frac{\sin 2x}{4x}$ 6. $\lim_{x \to \infty} (\sqrt{x} - x)$ 7. $\lim_{x \to 1} \frac{\sin(\ln x)}{x-1}$. 8. $\lim_{x \to \infty} x^{\frac{1}{x}}$.

Figure 2: Sketch a graph of f(x).

3 Derivatives

Review chain rule, implicit differentiation, logarithmic differentiation

- 1. Compute the following derivatives
 - (a) $f(x) = \sqrt{x \ln(2^x + 1)}$
 - (b) $g(x) = \frac{1}{x}\sin^3(2x)$
 - (c) $m(x) = (x^2 3)^x$ (Hint: logarithmic differentiation: set $y = (x^2 3)^x$ then compute the derivative of $\ln y$ implicitly. Deduce y'.)

Critical points of a function are when f'(x) = 0 or when f'(x) does not exist. Review first and second derivative tests to study the nature of critical points and locate any local extrema (maxima or minima) and inflection points of a function.

- 2. Given in Figure 2 a graph of f'(x), the derivative of a function f(x). The graph is made up of lines and a semicircle.
 - (a) Sketch a graph of f(x) on the interval [-5, 5].
 - (b) List the x-coordinates of all inflection points of f.
 - (c) Give the (x, y)-coordinates of the global minimum of f on [-5, 5].
 - (d) Give the (x, y)-coordinates of the global maximum of f on [-5, 5].

Review mean value theorem, optimization problems and related rates problems.

4 Integrals

The fundamental theorem of calculus (Under the right conditions, derivatives and integrals 'undo' each other.)

(I) If f is a continuous function on [a, b] and F is any antiderivative of f (so F'(x) = f(x)), then

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

(II) (Net Change) If g is differentiable on [a, b] then

$$\int_{a}^{b} g'(x)dx = g(x)|_{a}^{b} = g(b) - g(a)$$

(III) If f is continuous on [a, b] and we define $F(x) = \int_a^x f(t)dt$ for all $x \in [a, b]$, then our new function F(x) is continuous on [a, b] and differentiable on (a, b), and F'(x) = f(x) (so

$$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$$

for all $x \in [a, b]$).

Note: It follows by the chain rule that if u(x) is differentiable on [a, b] then

$$\frac{d}{dx}\int_{a}^{u(x)} f(t)dt = f(u(x))u'(x)$$

- 1. Find the following integrals
 - (a) $\int e^x (1 e^{3x}) dx$.
 - (b) $\int 3x^2 \sin(x^3 1) dx$.
 - (c) $\int \frac{2-3xe^x}{x} dx$. (d) $\int_2^4 \frac{x^4+2}{x} dx$
- 2. Let $h(x) = \int_0^{2x} \frac{t^2 25}{1 + \sin^2 t} dt$. Find all x at which h(x) has a local maximum. (Hint: Use the fundamental theorem of calculus (III) above, the note that follows it, and the first or second derivative tests to locate local extrema (maxima or minima)).
- 3. A population of rodents is changing at a rate of $P'(t) = \frac{1}{(100-t)^2}$, where P(t) is the number of rodents at time t, and t is measured in years.
 - (a) Find the net change in the population after 50 years.
 - (b) Find the net change in the population after T years.
 - (c) What happens to the population after hundred years? Is this model realistic?