Math 236 Calculus II (Fall 2014)

Calculus I (Math 235) Basics Review Sheet

Many topics were covered in Calculus I. The following is a review for only the basic tools and ideas in CalcI and you should master them before taking Calculus II.
H.w. Assignment 1: Solve all the numbered problems, write them very neatly, and submit them in class on Thursday August 282014.

1 Functions of One Variable

In Calculus I, we encountered the following types of functions:

- polynomial functions (e.g. $x^{3}-\frac{1}{3} x+5,2 x-1$),
- rational functions (e.g. $\frac{2 x^{3}-0.5}{x+4}$),
- algebraic functions (e.g $\sqrt[3]{x^{2}-1}$),
- trigonometric functions (e.g. $\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$),
- inverse trigonometric functions $\left(\arcsin x, \arccos x, \arctan x, \sec ^{-1} x\right)$ (restrict to an interval where the original trigonometric function is invertible i.e. one-to-one, or passes the horizontal line test, then define the inverse trigonometric function),
- exponential functions (e.g. $\left.e^{x}, 2^{x},\left(\frac{1}{2}\right)^{x}\right)$,
- logarithmic functions (e.g. $\left.\ln x, \log _{b} x\right)$.
(Review the domains of definitions (denominator $\neq 0$, under the square root ≥ 0, inside the logarithm >0, domains and ranges of inverse trigonometric functions, etc.), and careful plotting of these functions.)

1. Find the domains of definition of the following functions:
(a) $f(x)=\ln \left(\sqrt{\frac{x-1}{x^{2}-2 x-3}}\right)$
(b) $g(x)=(0.5)^{x^{3}-1}$
(c) $h(x)=\sqrt{\sec x}$
(d) $m(x)=3 \arcsin (x-4)$
2. Match the functions $2^{x}, x^{3}, \frac{\ln x}{\ln 8}, x^{1 / 3}$ (which is the same as $\sqrt[3]{x}$) to their graphs in Figure 1. Evaluate each of the four functions at $x=13$ and explain the order that you see in your answer. Is this order reflected in the given graph? Explain.

Figure 1: Match the functions $2^{x}, x^{3}, \frac{\ln x}{\ln 8}, x^{1 / 3}$ to their graphs.

2 Limits

Find the following limits (you may need L'Hospital rule to compute some of them). Recall the log, polynomial, and exponential power struggle.

1. $\lim _{x \rightarrow-\infty} 2 x^{3}+x^{2}-7$
2. $\lim _{x \rightarrow-2} \frac{4+2 x}{x^{2}+2 x}$
3. $\lim _{x \rightarrow 0} \frac{3 \sin x+x}{x}$
4. $\lim _{x \rightarrow-\infty} e^{x} \tan ^{-1} x$
5. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x}$
6. $\lim _{x \rightarrow \infty}(\sqrt{x}-x)$
7. $\lim _{x \rightarrow 1} \frac{\sin (\ln x)}{x-1}$.
8. $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$.

Figure 2: Sketch a graph of $f(x)$.

3 Derivatives

Review chain rule, implicit differentiation, logarithmic differentiation

1. Compute the following derivatives
(a) $f(x)=\sqrt{x \ln \left(2^{x}+1\right)}$
(b) $g(x)=\frac{1}{x} \sin ^{3}(2 x)$
(c) $m(x)=\left(x^{2}-3\right)^{x}$ (Hint: logarithmic differentiation: set $y=\left(x^{2}-3\right)^{x}$ then compute the derivative of $\ln y$ implicitly. Deduce y^{\prime}.)

Critical points of a function are when $f^{\prime}(x)=0$ or when $f^{\prime}(x)$ does not exist. Review first and second derivative tests to study the nature of critical points and locate any local extrema (maxima or minima) and inflection points of a function.
2. Given in Figure 2 a graph of $f^{\prime}(x)$, the derivative of a function $f(x)$. The graph is made up of lines and a semicircle.
(a) Sketch a graph of $f(x)$ on the interval $[-5,5]$.
(b) List the x-coordinates of all inflection points of f.
(c) Give the (x, y)-coordinates of the global minimum of f on $[-5,5]$.
(d) Give the (x, y)-coordinates of the global maximum of f on $[-5,5]$.

Review mean value theorem, optimization problems and related rates problems.

4 Integrals

The fundamental theorem of calculus (Under the right conditions, derivatives and integrals 'undo' each other.)
(I) If f is a continuous function on $[a, b]$ and F is any antiderivative of f (so $F^{\prime}(x)=f(x)$), then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

(II) (Net Change) If g is differentiable on $[a, b]$ then

$$
\int_{a}^{b} g^{\prime}(x) d x=\left.g(x)\right|_{a} ^{b}=g(b)-g(a)
$$

(III) If f is continuous on $[a, b]$ and we define $F(x)=\int_{a}^{x} f(t) d t$ for all $x \in[a, b]$, then our new function $F(x)$ is continuous on $[a, b]$ and differentiable on (a, b), and $F^{\prime}(x)=f(x)$ (so

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

for all $x \in[a, b])$.
Note: It follows by the chain rule that if $u(x)$ is differentiable on $[a, b]$ then

$$
\frac{d}{d x} \int_{a}^{u(x)} f(t) d t=f(u(x)) u^{\prime}(x)
$$

1. Find the following integrals
(a) $\int e^{x}\left(1-e^{3 x}\right) d x$.
(b) $\int 3 x^{2} \sin \left(x^{3}-1\right) d x$.
(c) $\int \frac{2-3 x e^{x}}{x} d x$.
(d) $\int_{2}^{4} \frac{x^{4}+2}{x} d x$
2. Let $h(x)=\int_{0}^{2 x} \frac{t^{2}-25}{1+\sin ^{2} t} d t$. Find all x at which $h(x)$ has a local maximum. (Hint: Use the fundamental theorem of calculus (III) above, the note that follows it, and the first or second derivative tests to locate local extrema (maxima or minima)).
3. A population of rodents is changing at a rate of $P^{\prime}(t)=\frac{1}{(100-t)^{2}}$, where $P(t)$ is the number of rodents at time t, and t is measured in years.
(a) Find the net change in the population after 50 years.
(b) Find the net change in the population after T years.
(c) What happens to the population after hundred years? Is this model realistic?
