MATH 236 (FALL 2014) MIDTERM REVIEW SHEET

OCT 8, 2014
(1) Fundamental Theorems of Calculus (See Calc I review sheet) (one example in Quiz I).
(2) Net Change Application of Fundamental Theorem of Calculus
quantity at time $t=$ quantity at time $a+\int_{a}^{t}$ (rate of change of quantity) $d t$
which is equivalent to $f(t)=f(a)+\int_{a}^{t} f^{\prime}(s) d s$ or $f(t)-f(a)=\int_{a}^{t} f^{\prime}(s) d s$.
Example The population of Tokyo grew at a rate shown in the figure. Estimate the net change in Tokyo population between 1970 and 1990.
(3) Integration Techniques (substitution, by parts, partial fractions, trigonometric integrals, trigonometric substitutions, reappearance act).

Examples:
(a) $\int \frac{8 x^{2}+8 x+2}{\left(4 x^{2}+1\right)^{2}} d x$
(b) $\int_{0}^{1} \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$
(4) Improper Integrals (identifying the source of the improperness (singularity), set up limit representation, computation, convergence and divergence using comparisons to known integrals (such as $\int \frac{d x}{x^{p}}$) or the limit comparison test. Examples:
(a) Find the values of p for which the following integrals converge $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}} ; \int_{0}^{1} x^{p} \sin \frac{1}{x} d x$.
(b) This example shows that $\int_{-\infty}^{\infty} f(x) d x$ is not necessarily equal to $\lim _{b \rightarrow \infty} \int_{-b}^{b} f(x) d x$. Show that $\int_{0}^{\infty} \frac{2 x d x}{x^{2}+1}$ diverges and hence that $\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}$ also diverges, while, $\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=$ 0 ! Plot a graph of the function $\frac{2 x}{x^{2}+1}$ and see whether you can have an intuition of what's going on (Hint: There are cancelations that are not allowed when you are considering infinite integrals (the rigorous answer involves absolute convergence)).
(5) Applications of Integrals
(a) Average of a function Example: The population of McAllen, Texas, can be modeled by the function

$$
P(t)=570(1.037)^{t}
$$

where P is in thousands of people and t is in years since 2000. Use this function to predict the average population of McAllen between the years of 2020 and 2040.
(b) Area between two curves or signed area between the graph of a function and the x-axis Example: Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) Volumes by Slices or Volumes by Shells (mostly -but not restricted to (see the Giza Pyramid problem)- of surfaces of revolution around a horizontal axis or a vertical axes).
(d) Surface area of revolution: $2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x$ (derivation using surface area of frustum.)
(e) Arc length of $f(x): \int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$, and estimating the arc length using discretization of the domain of $f(x)$. Going back and forth between discrete and the continuum using limits (derivation of the formula).
(f) Centroid of the region under the graph of $f(x)$ and the region between two graphs $f(x)$ and $g(x)$.
(g) Mass, Work, and Hydrostatic Force.
(6) Later, the beautiful theory of Differential Equations, and modeling the world!

