MATH 236 (FALL 2014) QUIZ I

THURS SEPT 24, 2014

Name:
Name:

Name:
Name:

Attempt all problems. Box your answers.
(1) Compute $\int(\ln x)^{2} d x$ (Hint: Integration by parts twice). Find the exact value of the average of the function $f(x)=(\ln x)^{2}$ over the interval $1 \leq x \leq 4$.
(2) Find the following:
(a) $\int(\sin x \sqrt{\cos x})^{3} d x$
(b) $\frac{d}{d x} \int_{1}^{\tan x} \frac{1}{t^{2} \sqrt{t^{2}+1}} d t$.
(c) $\int \frac{x^{3}+4 x^{2}-21}{x^{2}+6 x+10} d x$.
(d) $\int_{1}^{3} \frac{1}{x^{2}(x+1)} d x$
(3) Frank is evaluating electric motors to drive automated mixing for some waste tanks that he must maintain. One pump is advertised to have a probability that follows the exponential distribution

$$
f(t)=0.31 e^{-0.31 t}
$$

where the time $t>0$ is measured in years. Frank knows that the expected time of failure for something following this distribution is

$$
\int_{0}^{\infty} t f(t) d t
$$

How long can he expect one of these pumps to last?
(4) (a) Plot the graph of the function $e^{-x^{2}}$.
(b) Graphically, explain why $\int_{-1}^{1} e^{-x^{2}} d x>1$.
(c) Give an estimate for $\int_{1}^{\infty} e^{-x^{2}} d x$ by comparison to the integral $\int_{1}^{\infty} x e^{-x^{2}} d x$.
(d) Use parts (b), (c) and your graph in part (a) to estimate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
(e) Find the actual value $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ using a calculator or your smart phone. (In Calc III, you will be able to evaluate this integral).
(5) For which values of p does the improper integral $\int_{0}^{1} x^{p} \sin \frac{1}{x} d x$ converge? (Hint: It may be easier to use the substitution $u=\frac{1}{x}$, then $d u=\ldots$. Then compare your new integral (with new boundaries) to an integral that you know. Make sure that your answer covers all possible values of p).

