MATH 236 (FALL 2014) QUIZ III ON CHAPTER 8

THURS DEC 4, 2014

Name: Name:
Name: Name:
Attempt all problems. Box your answers.

(1) Consider the series

l—z+a?—23+. .. :Z(—l)”x”.
n=0
(a) Find the radius of convergence, interval of convergence, and the type of convergence on
that interval.



THURS DEC 4, 2014

(b) The above series is also a geometric series. What is the common ratio r? What is the

. . first index
exact sum of the above series? (Hint: Use the formula ~———)

(c) Deduce from part (b) the identity

2 a8

In(1 =r——4+—=——...
n(l+z)==x 2+3

and find the interval on which it is valid (check the endpoints individually).
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(d) How many terms from the above series do you need to use to be able estimate In(2) to
within 0.001 of its value? What is that value?
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(e) Plot a (very neat) graph of In(1 + ), its Taylor polynomial of order 5, and of its series
expansion (all on the same graph). Specify clearly the interval on which the series is
well-defined.
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(2) Write down the definition of:
(a) (i) f is smooth on the interval (a,b).

(ii) f is analytic on the interval (a,b).

(b) Is every real valued smooth function analytic?
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(c) Show that the function e~/ =* and its Taylor series expansion around xy = 0 disagree
everywhere except at * = 0. Plot a figure to illustrate. Is this function analytic
anywhere?
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(3) (a) Prove that the function ®2¢ is analytic on R and find its Taylor expansion around
o = 0.

(b) Plot % and its Taylor polynomial approximations of order 6 and 8, on the interval
(—10,10).

cosx
xT

(c) What must you change if we were to consider the function instead?
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(4) Find all values of x for which the following series converges
— 1+ n2n
When is the convergence absolute and when is it conditional?
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Review for final, do not solve Using the Lagrange form of the Taylor remainder R"(x) =
[ (@—a)m
(n+1)!

, prove that



