MATH 236 (FALL 2014) QUIZ III ON CHAPTER 8

THURS DEC 4, 2014

Name:
Name:

Name:
Name:

Attempt all problems. Box your answers.
(1) Consider the series

$$
1-x+x^{2}-x^{3}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

(a) Find the radius of convergence, interval of convergence, and the type of convergence on that interval.
(b) The above series is also a geometric series. What is the common ratio r ? What is the exact sum of the above series? (Hint: Use the formula $\frac{r^{\text {first index }}}{1-r}$).
(c) Deduce from part (b) the identity

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
$$

and find the interval on which it is valid (check the endpoints individually).
(d) How many terms from the above series do you need to use to be able estimate $\ln (2)$ to within 0.001 of its value? What is that value?
(e) Plot a (very neat) graph of $\ln (1+x)$, its Taylor polynomial of order 5, and of its series expansion (all on the same graph). Specify clearly the interval on which the series is well-defined.
(2) Write down the definition of:
(a) (i) f is smooth on the interval (a, b).
(ii) f is analytic on the interval (a, b).
(b) Is every real valued smooth function analytic?
(c) Show that the function $e^{-1 / x^{2}}$ and its Taylor series expansion around $x_{0}=0$ disagree everywhere except at $x=0$. Plot a figure to illustrate. Is this function analytic anywhere?
(3) (a) Prove that the function $\frac{\sin x}{x}$ is analytic on \mathbb{R} and find its Taylor expansion around $x_{0}=0$.
(b) Plot $\frac{\sin x}{x}$ and its Taylor polynomial approximations of order 6 and 8, on the interval $(-10,10)$.
(c) What must you change if we were to consider the function $\frac{\cos x}{x}$ instead?
(4) Find all values of x for which the following series converges

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{1+n 2^{n}}
$$

When is the convergence absolute and when is it conditional?

Review for final, do not solve Using the Lagrange form of the Taylor remainder $R^{n}(x)=$ $\frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$, prove that

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

