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For a function f(x) we have three objects that are related:

1. If f(x) is smooth (infinitely differentiable) in a neighborhood of a, we can construct its
Taylor series expanded about x0 = a :

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +

f (4)(a)

4!
(x− a)4 + . . . .

2. If f(x) has at least n-derivatives in a neighborhood of a we can construct its
Taylor polynomial of degree n about x0 = a :

Pn
x0=a(x) = f(a)+f ′(a)(x−a)+ f ′′(a)

2!
(x−a)2+ f ′′′(a)

3!
(x−a)3+ f (4)(a)

4!
(x−a)4+. . .+

f (n)(a)

n!
(x−a)n

Taylor polynomial terminates after n-terms but Taylor series keeps going.

3. The Taylor remainder is the difference between f(x) and its Taylor polynomial:

Rn
x0=a(x) = f(x)− Pn

x0=a(x)

=
f (n+1)(c)

(n+ 1)!
(x− a)n+1 (Lagrange’s form of the remainder, very useful!)

=
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt (Integral form of the remainder)

provided that f (n+1) (the (n+1)’th derivative of f) is continuous on an interval I containing a and
x, and c is a point between a and x.

1 Goals

Since polynomials are easy functions to deal with,
and to evaluate, we want to know:

• How well can we approximate a function (that
has enough derivatives) near a point x0 by its
Taylor polynomial expanded around that point
(finite number of terms of its Taylor series)?
How much error are we committing (Taylor re-
mainder) by doing that?

• When does a smooth function and its Tay-
lor series agree? (They agree on the interval
where Taylor remainder → zero as n → ∞.
Cases: they may agree only at the point of
expansion x0 = a, the whole real line R, or
a finite interval). A function which agrees
with its Taylor expansion on an interval is
called an analytic function on that interval.
Rephrase the question: Can a function be

represented by its Taylor series around a
point, near that point? Answer: Yes if the
Taylor remainder goes to zero in a neighbor-
hood of that point, and that makes the func-
tion analytic in that neighborhood.

2 Notes

1. Even though the Taylor series is constructed
using the function f(x), it need not con-
verge to f(x). In fact, some Taylor series
agree with the function f(x) nowhere except
at the point x0 (for example, e−1/x

2

and it’s
Taylor series around zero agree nowhere ex-
cept at the point zero). Those functions which
agree with their Taylor series expansion on
an interval are called analytic on that in-
terval. So, whenever you write a function
equal to its Taylor series expansion, you need
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to specify the interval on which this

equality is valid.

2. Thus, an analytic function is smooth ,

but a smooth function need not be analytic.

Later math classes: This is very different from
complex valued functions, where analytic func-
tions and infinitely differentiable functions are
the same.

3. limn→∞ of Taylor polynomial=Taylor series.

4. Taylor series is a power series (has the form∑∞
n=0 an(x−x0)

n where an = f(n)(a)
n! ). It con-

verges at x = a to f(a) (so Taylor series always
agrees with f(x) at the point of expansion, and
the question is how far can we push beyond the
point of expansion and still have the function
agreeing with its Taylor series, or well approx-
imated by a Taylor polynomial of certain de-
gree). Everything we know about power series
(see Section 3 below) applies to Taylor series:
we can find its radius of convergence, interval
of convergence, and type of convergence (ab-
solute within the interval, check endpoints in-
dividually). Again, the Taylor series could be
converging to something completely different
than the function f(x) away from the point of
expansion x0. It could also be not converging
at all away from x0.

5. Term by Term Differentiation and Integration

As long as we are within the interval of convergence
of a power series, we can differentiate it or integrate
it term by term as many times as we want. The
new series that we obtain has the same interval
of convergence as the one we started with, except
possibly at the endpoints, which we can check indi-
vidually (plug in the end points into the new power
series that you obtained through differentiating or
integrating).

We can use this fact to construct Taylor series of
analytic functions using Taylor series of other an-
alytic functions, without having to go through the
pain of differentiating the function many times,
getting the pattern, then finding the Taylor re-
mainder and checking whether it goes to zero as
n→∞.

e.g. Prove that the function tan−1(x) is analytic
on the interval [−1, 1] and write down its Taylor
expansion around a point in that interval.

Soln Integrate the Taylor series for the function
1

1+x2 obtained by substituting (−x2) for x in the
series for 1

1−x
on the interval (−1, 1). Then check

the endpoints −1 and 1 in the new series individ-
ually (see (7) in Section 5 below).

6. So how to know whether a function is
analytic on an interval? We learned two meth-
ods:

(a) Find the Taylor remainder Rn(x) (compute
derivatives of f until you get the pattern),
then find limn→∞R

n(x), if the limit for x in
a certain interval is zero, then the function
is analytic on that interval.

(b) If you can derive your function using another
analytic function that you know by substitu-
tion, differentiation, or integration, then that
is much easier than part (a) (for example, the
tan−1(x) function above).

3 Power Series
∑∞

n=0 an(x− x0)
n

A power series always converges to a0 at x = x0. The
question is how far can we push beyond x0 and still
have the power series converge?

1. Compute either

lim
n→∞

n
√
|an||x− x0| or lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x− x0|.

Do not forget the absolute values.

2. The power series converges absolutely at the
interval where the above limit is < 1. Solve
the inequality for x to find the interval of con-
vergence. If the limit is a number that is al-
ways less than 1, then the series is absolutely
convergent everywhere on R, and the radius of
convergence is infinity.

3. We have to check the endpoints of the interval
alone.

(a) If the series converges absolutely on one
endpoint then it also converges absolutely
on the other one and no need to check the
other one.

(b) If the series converges conditionally at
one endpoint then we need to check the
other one (could converge conditionally
there or not converge at all).

(c) If the series does not converge at one end-
point then we need to check the other one
(could converge conditionally there or not
converge at all).
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4. The radius of convergence R is how far we
could push beyond x0 on either side (half of
the width of the interval of convergence) and
still have the series converge. The radius could
be 0 and when the series converges nowhere
except at the point x0, finite when the series
converges on a finite interval (x0 − R, x0 + R)
with endpoints included or excluded, or infinite
when the series converges everywhere on R.

5. A convergent power series defines a function on
its interval of convergence (this function could
coincide with a function that we know, or not.
For example, the power series

∑∞
n=0 x

n coin-
cides with the function 1

1−x on the interval
(−1, 1) (because it is a geometric series with
r = x, we know its sum). Note that this
power series does not converge outside this in-
terval, while the function 1

1−x is perfectly fine
outside the interval, except at x = 1, where
it has a vertical asymptote. Conversely, this
makes the function 1

1−x analytic on the interval
(−1, 1), with

∑∞
n=0 x

n its Taylor series around
the point x0 = 0.) As long as we are inside
the interval of convergence of the power series,
we can differentiate it and integrate it term by
term. We check the endpoints of the new series
individually.

Hence, a power series defines a continuous, dif-
ferentiable, and integrable function within its
interval of convergence.

4 Summary
You need to know what each of the following means:

1. Power series.

2. Taylor series.

3. Taylor polynomial.

4. Taylor remainder.

5. Smooth function.

6. Analytic function on an interval.

You also need to know

1. How to determine whether a smooth function
is analytic on an interval.

2. Examples of analytic functions and intervals on
which they are analytic and examples of non-
analytic functions.

3. Graphing a function, its Taylor polynomials of
various degrees around a point, and identify-
ing graphically the Taylor remainder at various
points near the expansion point.

4. Using analytic functions to find the ex-
act sums of series of numbers, for example∑∞

n=0
(−1)n

n = ln(2) (plug x = 1 in (6) in Sec-
tion 5 below).
Conversely approximate numbers like e0.5 us-
ing finite sum of the Taylor series of the an-
alytic function (put x = 0.5 in (1) in Section
5 below, if you use say 7 terms of the series,
then the error is the Taylor remainder R7(0.5)
which you have a formula for on page 1).

5 Some famous analytic functions

1. ex =
∑∞

n=0
xn

n!
= 1 + x+ x2

2!
+ x3

3!
+ . . . on R.

2. sin(x) =
∑∞

n=0
(−1)n

(2n+1)!
x2n+1 = x− x3

3!
+ x5

5!
+ . . . on R.

3. cos(x) =
∑∞

n=0
(−1)n

(2n)!
x2n = 1− x2

2!
+ x4

4!
− . . . on R.

4. 1
1−x

=
∑∞

n=0 x
n = 1 + x+ x2 + x3 + . . . on (−1, 1).

5. 1
1+x

=
∑∞

n=0(−1)
nxn = 1− x+ x2 − x3 + . . . on (−1, 1) (substitute −x for x in (4)).

6. ln(1 + x) =
∑∞

n=1
(−1)n+1

n
xn = x− x2

2
+ x3

3
− x4

4
+ . . . on (−1, 1] (integrate (5) and check endpoints).

7. tan−1(x) =
∑∞

n=0
(−1)n

2n+1
x2n+1 = x− x3

3
+ x5

5
− x7

7
+ . . . on [−1, 1] (substitute x2 for x in (5), integrate, then

check endpoints).

In all of the above series, we are expanding around the point x0 = 0, so the series is also called Maclaurin series.
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6 More on Analytic Functions
A function f(x) is analytic on an interval (a, b) iff its Taylor expansion around each point x0 in (a, b) converges to
f(x) in a neighborhood of x0. That is, the function f(x) can be represented by its Taylor series expansion near every
point of the interval (a, b).

1. Every smooth function (possesses continuous derivatives of all orders) has a Taylor series expansion but this
Taylor series need not converge to the function f(x). If it does in a neighborhood of x0 then the function is
analytic in that neighborhood.

2. Example: Consider the function f(x) = ln(1 + x). Its domain of definition is (−1,∞). Pick a point of
expansion x0 = a in its domain. Construct the Taylor series around that point:

ln(1 + a) +
1

1 + a
(x− a)− 1

2(1 + a)2
(x− a)2 + 1

3(1 + a)3
(x− a)3 − . . . .

This Taylor series converges whenever |x−a| < 1+a (so if a = 0, it converges for |x|<1, and if a = 3, it converges
for |x − 3| < 4; the endpoints need to be checked individually.) Now using the Lagrange form of the Taylor
remainder Rn(x) = f(n+1)(c)

(n+1)!
(x−a)n+1, we can compute this remainder and prove that limn→∞R

n(x) = 0 for
|x− a| < 1+ a, and hence the above Taylor series converges to the function ln(1+ x) in that interval. That is,

ln(1 + x) = ln(1 + a) +
1

1 + a
(x− a)− 1

2(1 + a)2
(x− a)2 + 1

3(1 + a)3
(x− a)3 − . . . for |x− a| < 1 + a.

Since this argument is valid for any point a in the domain of ln(1+ x), we have proved that: Near every point
x0 = a (in the neighborhood |x− a| < 1 + a) in the domain of ln(1 + x), this function can be represented by
its Taylor series expansion around that point. Hence ln(1 + x) is analytic on the interval (−1,∞).
Note that for a = 0, we could have just integrated the Taylor series for the function 1

1+x
within the interval

(−1, 1) (and checked endpoints individually), and gotten the equality

ln(1 + x) =

∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+
x3

3
− x4

4
+ . . . on (−1, 1].

From this, we can only deduce that ln(1 + x) is analytic on the interval (−1, 1), but not on all of its domain
(−1,∞) as we proved above.

3. Real valued functions which are analytic on their domains are sparse and only certain special functions are.
On the contrary, for complex valued functions, differentiable functions are automatically analytic.

7 Exercises
1. (a) Prove that the function sin x

x
is analytic on R and find its Taylor expansion around x0 = 0. (Hint: Use

(2) from section 5 above.)

(b) Plot sin x
x

and its Taylor polynomial approximations of order 6, 8 and 10, on the interval (−10, 10).
(c) What must you change if we were to consider the function cos x

x
instead?

2. (We did this in class) Show that the function e−1/x2

and its Taylor series expansion around x0 = 0 disagree
everywhere except at x = 0. (In fact, the Taylor series around x0 = is identically zero, while the function
e−1/x2

is zero only at x = 0.) Plot a figure to illustrate. Is this function analytic anywhere?

3. Consider the improper integral ∫ ∞
0

e−xt − e−t

t
dt,

where x > 0.

(a) Why is this integral improper? Split the integral into the sum of two integrals, where each integral
contains only one source of improperness.

(b) Prove that each of the above integrals is convergent, and hence their sum is convergent as well. (Hint:
For the integral near zero, use Taylor series expansions of the functions e−xt and e−t, subtract, divide by
t, then integrate. For the integral away from zero, use the inequality t > ε to take t outside the integral,
then integrate the rest.)
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