Math 336 Ordinary Differential Equations Final Exam

Fall 2015

Name:

Box your answers.

1 Solve the following ODEs or IVPs

If the ODEs admit complex solutions, write BOTH the complex solutions and the real solutions.

1. $x^{2}\left(1+y^{2}\right)+2 y \frac{d y}{d x}=0$ with $y(0)=1$.
2. $y^{\prime \prime}-y^{\prime}-6 y=3 t+2$.
3. Power series method: $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$. Can you express your series solution in terms of elementary functions?

2 Systems

1. The matrix $A=\left(\begin{array}{cc}4 & -10 \\ 2 & -4\end{array}\right)$ has an eigenvalue $\lambda_{1}=2 i$ and a corresponding eigenvector $\underline{v}=\binom{2+i}{1}$. Find the real solution of the system $\underline{w}^{\prime}=A \underline{w}$. Make an accurate phase portrait.
2. Ecological model: Analyze the type and stability of the critical points of the following predatorprey ecological system, then plot a phase portrait showing all interactions and the separatrices if any. Based on your phase portrait, make future predictions for the behavior of the two species.

$$
\left\{\begin{array}{l}
x^{\prime}(t)=7 x-x^{2}-2 x y \\
y^{\prime}(t)=y-y^{2}+2 x y .
\end{array}\right.
$$

3 Solve the following to the best of your knowledge

1. A simple model for air resistance is that the force is proportional to and opposing velocity such that the velocity of a falling object as a function of time satisfies the following differential equation,

$$
m v^{\prime}=-\gamma v-m g
$$

where $m>0$ is the object's mass, $\gamma>0$ is the resistance coefficient, and $g>0$ is the gravitational acceleration constant.
(a) Solve the initial value problem with $v(0)=0$.
(b) Determine the limiting velocity.
2. (a) Define resonance.
(b) A mass-spring system can be modeled using the following ODE,

$$
m x^{\prime \prime}+c x^{\prime}+k x=f(t)
$$

where m is the mass, c is the resistance constant, k is the spring constant, and $f(t)$ is an external force applied to the system. Consider a cart whose weight is $128 l b$ that is attached to a wall by a spring with spring constant $k=64 l b / f t$. Initially, the cart is pulled 0.5 ft in the direction away from the wall and released with no initial velocity. Simultaneously, a periodic external force $f(t)=32 \sin (4 t)$ is applied to the cart. Assuming that there is no air resistance, find the position of the cart at any time t. Plot your solution, illustrating the resonance phenomenon. (Note that to obtain the mass of the cart, you need to divide its weight by the gravity $g=32 f t / \sec ^{2}$.)

4 Theory

1. State Picard's existence and uniqueness theorem for a first order ODE

$$
\frac{d y}{d x}=F(x, y)
$$

2. Use Picard's iteration $y_{j+1}(x)=y_{0}+\int_{x_{0}}^{x} F\left(s, y_{j}(s)\right) d s$ to solve the ODE $y^{\prime}=2 y$ with $y(0)=1$. (Note that this IVP is easy to solve, and the solution is $y(x)=e^{2 x}$, but Picard's iteration with $x_{0}=0$ and $y_{0}(x)=y_{0}=1$ gives you a sequence of functions that converges to $e^{2 x}$.)
