# Math 336 Ordinary Differential Equations Midterm Exam 

## Fall 2015

Box your answers.

## 1 Solve the following ODEs or IVPs

If the ODEs admit complex solutions, write BOTH the complex solutions and the real solutions.

1. $y^{\prime}=y^{2} t^{2}, y(0)=1$. Plot the solution.
2. $y^{\prime}+y-1=0, y(0)=0$. Plot the solution.
3. $y^{\prime}=\frac{-4 x^{3}-4 y}{4 x-y^{4}}$. (Hint: Is this ODE exact?). Plot two distinct solution curves.
4. $y^{\prime \prime}-12 y^{\prime}+36 y=0, y(0)=4$ and $y^{\prime}(0)=0$. Plot the solution.
5. $y^{\prime \prime}+8 y+25 y=0$.
6. $y^{\prime \prime}+4 y^{\prime}+5 y=5 x+5 e^{-x}$.
7. $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$.

## 2 Solve the following to the best of your knowledge

1. (Skydiver velocity model) A skydiver jumps off an airplane and is in vertical downward motion. He deploys his parachute 15 seconds into his fall. Assuming that his initial velocity $v(0)=0$, and that air resistance $F_{R}$ is proportional to $v^{2}$ before parachute deployment, and to $v$ after parachute deployment. Let $g=32.2 \mathrm{ft} / \mathrm{sec}^{2}, k_{1} / m=0.00104$ and $k_{2} / m=2.01$, where $m$ is the body mass of the skydiver, and $k_{1}$ and $k_{2}$ are the proportionality constants between $F_{R}$ and $v^{2}$ and $v$ respectively.
(a) Write a first order ODE modeling the velocity of the skydiver. Do not solve the ODE.
(b) What is the limiting velocity of the skydiver before and after deployment?
2. Convert the following higher order ODE into a system of first order ODEs

$$
y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{x}-10 \cos (3 x) .
$$

Find the form of the particular solution of the above ODE (don't forget to check for duplication).

## 3 Numerical

Consider the IVP $y^{\prime}=\frac{-2 x y}{1+x^{2}}, y(0)=1$.

1. Find the analytical solution and plot it on the interval $[0,5]$.
2. Solve numerically using Euler's method with step size $h=0.5$ on the interval $[0,5]$. Plot the numerical solution on the same graph above.
3. Estimate the error using the second derivative of the exact solution.
