Math 336 Ordinary Differential Equations Written Assignment 1

First Order Differential Equations

1 Reading assignment

Read chapter 1 from the book.

2 Problem set (due Thursday September 17 2015)

1. (Skydiver velocity model) A skydiver jumps off an airplane and is in vertical downward motion. He deploys his parachute 15 seconds into his fall. Assuming that his initial velocity $v(0)=0$, and that air resistance F_{R} is proportional to v^{2} before parachute deployment, and to v after parachute deployment. Let $g=$ $32.2 \mathrm{ft} / \mathrm{sec}^{2}, k_{1} / m=0.00104$ and $k_{2} / m=$ 2.01, where m is the body mass of the skydiver, and k_{1} and k_{2} are the proportionality constants between F_{R} and v^{2} and v respectively.
(a) Write a first order ODE modeling the velocity of the skydiver.
(b) Solve your ODE. (Keep in mind the continuity condition at $t=15 \mathrm{sec}$.)
(c) What is the limiting velocity of the skydiver before and after deployment?
2. (Population model: doomsday vs extinction) Consider a population whose birth rate increases at a rate proportional to itself, and whose death rate is constant.
(a) Show that this population change can be modeled by the first order ODE $\frac{d P}{d t}=k P(P-M)$.
(b) What are the critical points of this ODE? Are they stable? Unstable?
(c) Make a $t-P$ plot illustrating the long term behavior of the population depending on different initial values P_{0}.
(d) Why is this model called doomsday vs extinction?
(e) Write down the analytical solution of the ODE with initial condition $P(0)=P_{0}$ and comment on $\lim _{t \rightarrow \infty} P(t)$. Contrast your answer with part (c) above.

3 Matlab assignment

1. (Graphical solution- direction field) Use DFIELD8 command in Matlab to plot the direction field of the ODE $y^{\prime}=y^{2}-3 t$. Plot the particular solution with initial condition $y(2)=1$. Note that the trajectories do not cross (food for thought: why?). Using the methods for first order ODEs that we know so far, can you analytically solve the above ODE?
2. (Numerical solution) Use ODE45 command in Matlab to solve the above initial value problem $\left(y^{\prime}=y^{2}-3 t\right.$ with $\left.y(2)=1\right)$. Then use PLOT to plot your solution. Compare with the approximate solution you obtained using DFIELD8.
