Math 336 Ordinary Differential Equations Written Assignment 5

Systems of Differential Equations (Linear, Nonlinear)

1 Concepts

1. Transforming higher order equations to first order systems (linear or nonlinear).

1.1 First order linear systems

1. Expressing linear systems in matrix and vector notation $\underline{w}^{\prime}=A \underline{w}+\underline{f}$ and vice versa.
2. The eigenvalue method to solve linear systems: If $\underline{w}=\underline{v} e^{\lambda t}$ solves the homogeneous linear system $\underline{w}^{\prime}=A \underline{w}$, then λ must be an eigenvalue of A with corresponding eigenvalue λ. So the method tells us to find the eigenvalues of A using $\operatorname{det}(A-\lambda I)=0$, then find the corresponding eigenvectors.
These cases may happen:
(a) distinct eigenvalues: then the solution is the linear combination of $\underline{v_{i}} e^{\lambda_{i} t}$.

- In the case of complex eigenvalues, since the coefficient matrix is real, they come in conjugate pairs $\lambda_{1,2}=a \pm b i$. To find the two real solutions associated with this pair, use only one complex eigenvalue and its corresponding eigenvector, $\underline{v} e^{a t} e^{i b t}=$ $\underline{v} e^{a t}(\cos (b t)+i \sin (b t))$ then multiply, separate the real and imaginary parts of the resulting vector solution, these will be the desired real solutions.
(b) repeated real eigenvalues:
i. producing enough eigenvectors: the solution is the linear combination of $\underline{v_{i}} e^{\lambda t}$.
ii. not producing enough eigenvectors: Not required in Math 336, but the phase portrait is required (very improper node).
(c) repeated complex eigenvalues: not required in Math 336. Note that the matrix has to be at least 4×4 for this to happen.

3. Plotting solutions:
(a) Plot each coordinate of $\left(\begin{array}{l}x(t) \\ y(t) \\ z(t)\end{array}\right)$ as a function of t. Note that periodic solutions produce closed paths in the phase portrait.
(b) Phase portraits and stability: eigenvalues real (proper nodes and very improper nodes (λ 's equal), improper nodes, saddles); eigenvalues complex (centers or spirals).
4. Nonhomogeneous system? Need to find a particular solution \underline{w}_{p} and add it to the complimentary solution.
5. Numerical methods: Euler, Improved Euler, Runge Kutta.

1.2 First order nonlinear systems

Autonomous system $\left\{\begin{aligned} x^{\prime}(t) & =F(x, y), \\ y^{\prime}(t) & =G(x, y) .\end{aligned}\right.$

1. Critical points: $\mathrm{RHS}=\underline{0}$.
2. Isolated critical points and equilibrium solutions (note that $\underline{0}$ is the only critical point for a homogeneous linear system $\left\{\begin{array}{l}x^{\prime}(t)=a_{1} x+b_{1} y, \\ y^{\prime}(t)=a_{2} x+b_{2} y,\end{array}\right.$ whenever $\left.\operatorname{det}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right) \neq 0\right)$.
3. Linearizing around a critical point $\left(x^{*}, y^{*}\right), x=x^{*}+u$ and $y=y^{*}+v$, we get

$$
\left\{\begin{array}{l}
u^{\prime}(t)=a_{1} u+b_{1} v+f(u, v), \\
v^{\prime}(t)=a_{2} u+b_{2} v+g(u, v)
\end{array}\right.
$$

4. Simple critical point at $(0,0)$: isolated and remainder goes to zero, that is, $\lim _{(u, v) \rightarrow(0,0)} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=$ 0 and $\lim _{(u, v) \rightarrow(0,0)} \frac{g(u, v)}{\sqrt{u^{2}+v^{2}}}=0$. This condition is sufficient to guarantee that the linearized system is a good approximation of the original nonlinear system:

- Find the type and stability of the critical point of the linearized system.
- This will be the same as for the nonlinear system, except possibly in two sensitive cases:
(a) Eigenvalues real and equal: linearized system node, nonlinear system either node or spiral point (stability determined by the sign of $\lambda_{1}=\lambda_{2}$).
(b) Eigenvalue purely imaginary: linearized system center, nonlinear system either center or spiral point (could be stable, asymptotically stable, or unstable).
In these sensitive cases, determining the analytical implicit solution by attempting to solve $\frac{d y}{d x}=\frac{G(x, y)}{F(x, y)}$ maybe helpful, even though it defeats the purpose in a way (see problem (2) below).

5. Using the Jacobian $J(x, y)=\left(\begin{array}{cc}F_{x}(x, y) & F_{y}(x, y) \\ G_{x}(x, y) & G_{y}(x, y)\end{array}\right)$ to linearize about critical points.
6. Big picture phase portrait.
7. Limit cycles?
8. Applications:
(a) Ecological models: Interaction of logistic population- competition, cooperation, predationdepending on the signs of c_{1} and c_{2} in

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a_{1} x-b_{1} x^{2}-c_{1} x y \\
y^{\prime}(t)=a_{2} y-b_{2} y^{2}-c_{2} x y
\end{array}\right.
$$

(b) Nonlinear pendulum (undamped: $\theta^{\prime \prime}+\omega^{2} \sin (\theta)=0$, damped: $\theta^{\prime \prime}+c \theta^{\prime}+\omega^{2} \sin (\theta)=0$): infinitely many critical points.
9. Separatrix.

2 Reading assignment

Read chapters 10 and 11 from the book.

3 Problem set (due Thursday December 10 2015)

1. The matrix $A=\left(\begin{array}{cc}4 & -10 \\ 2 & -4\end{array}\right)$ has an eigenvalue $\lambda_{1}=2 i$ and a corresponding eigenvector $\underline{v}=\binom{2+i}{1}$.
(a) Find the real solution of the system $\underline{w}^{\prime}=A \underline{w}$.
(b) Each trajectory is an ellipse. Write down the parametric equations of these ellipses: $x(t)=\ldots$ and $y(t)=\ldots$.
(c) Along which directions are the major and minor axis of these ellipses are? (Does the eigenvector tell you any information about this?)
(d) Use a graphing utility to plot the coordinates $x(t)$ and $y(t)$ as a function of t, when the initial conditions are $x(0)=-4$ and $y(0)=-1$.
(e) Plot the phase portrait.
2. Analyze the type and stability of the critical points of the following predator-prey ecological system, then plot a phase portrait showing all interactions and the separatrices if any.

$$
\left\{\begin{aligned}
x^{\prime}(t) & =7 x-x^{2}-2 x y \\
y^{\prime}(t) & =y-y^{2}+2 x y
\end{aligned}\right.
$$

3. Analyze the type and stability of the critical points of the following predator-prey ecological system, then plot a phase portrait showing all interactions and the separatrices if any.

$$
\left\{\begin{array}{l}
x^{\prime}(t)=200 x-4 x y \\
y^{\prime}(t)=-150 y+2 x y .
\end{array}\right.
$$

Find the analytical solution $f(x, y)=C$ to show that one of the critical points for the nonlinear system above is in fact a center, since it is a sensitive case. You may need a graphing utility or MATLAB for the contour plot of $f(x, y)$.
4. Consider the damped nonlinear pendulum

$$
\theta^{\prime \prime}+0.1 \theta^{\prime}+\sin (\theta)=0
$$

Transform into a first order system, find the critical points, linearize to study the types and the stability of the critical points, then plot a phase portrait, showing the separatrices.

4 Graphing and computing

1. For number (3) above, use MATLAB to find the contour plot for the analytical solution $f(x, y)=C$ of the system.
2. Use a phase portrait graphing utility to plot the phase portraits of the systems in problems $1,2,3$ and 4 above, hence confirming your predictions.
