
Math 336 Ordinary Differential Equations Written Assignment 5

Systems of Differential Equations (Linear, Nonlinear)

1 Concepts

1. Transforming higher order equations to first order systems (linear or nonlinear).

1.1 First order linear systems

1. Expressing linear systems in matrix and vector notation w′ = Aw + f and vice versa.

2. The eigenvalue method to solve linear systems: If w = veλt solves the homogeneous linear
system w′ = Aw, then λ must be an eigenvalue of A with corresponding eigenvalue λ. So the
method tells us to find the eigenvalues of A using det(A−λI) = 0, then find the corresponding
eigenvectors.

These cases may happen:

(a) distinct eigenvalues: then the solution is the linear combination of vieλit.

• In the case of complex eigenvalues, since the coefficient matrix is real, they come in
conjugate pairs λ1,2 = a ± bi. To find the two real solutions associated with this
pair, use only one complex eigenvalue and its corresponding eigenvector, veateibt =
veat(cos(bt) + i sin(bt)) then multiply, separate the real and imaginary parts of the
resulting vector solution, these will be the desired real solutions.

(b) repeated real eigenvalues:

i. producing enough eigenvectors: the solution is the linear combination of vieλt.
ii. not producing enough eigenvectors: Not required in Math 336, but the phase portrait

is required (very improper node).

(c) repeated complex eigenvalues: not required in Math 336. Note that the matrix has to
be at least 4× 4 for this to happen.

3. Plotting solutions:

(a) Plot each coordinate of

 x(t)
y(t)
z(t)

 as a function of t. Note that periodic solutions produce

closed paths in the phase portrait.

(b) Phase portraits and stability: eigenvalues real (proper nodes and very improper nodes
(λ’s equal), improper nodes, saddles); eigenvalues complex (centers or spirals).

4. Nonhomogeneous system? Need to find a particular solution wp and add it to the complimen-
tary solution.

5. Numerical methods: Euler, Improved Euler, Runge Kutta.
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1.2 First order nonlinear systems

Autonomous system
{
x′(t) = F (x, y),
y′(t) = G(x, y).

1. Critical points: RHS= 0.

2. Isolated critical points and equilibrium solutions (note that 0 is the only critical point for a

homogeneous linear system
{
x′(t) = a1x + b1y,
y′(t) = a2x + b2y,

whenever det
(
a1 b1
a2 b2

)
6= 0).

3. Linearizing around a critical point (x∗, y∗), x = x∗ + u and y = y∗ + v, we get{
u′(t) = a1u + b1v + f(u, v),
v′(t) = a2u + b2v + g(u, v).

4. Simple critical point at (0, 0): isolated and remainder goes to zero, that is, lim(u,v)→(0,0)
f(u,v)√
u2+v2

=

0 and lim(u,v)→(0,0)
g(u,v)√
u2+v2

= 0. This condition is sufficient to guarantee that the linearized
system is a good approximation of the original nonlinear system:

• Find the type and stability of the critical point of the linearized system.
• This will be the same as for the nonlinear system, except possibly in two sensitive cases:

(a) Eigenvalues real and equal: linearized system node, nonlinear system either node or
spiral point (stability determined by the sign of λ1 = λ2).

(b) Eigenvalue purely imaginary: linearized system center, nonlinear system either center
or spiral point (could be stable, asymptotically stable, or unstable).

In these sensitive cases, determining the analytical implicit solution by attempting to
solve dy

dx = G(x,y)
F (x,y) maybe helpful, even though it defeats the purpose in a way (see

problem (2) below).

5. Using the Jacobian J(x, y) =
(
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

)
to linearize about critical points.

6. Big picture phase portrait.

7. Limit cycles?

8. Applications:

(a) Ecological models: Interaction of logistic population- competition, cooperation, predation-
depending on the signs of c1 and c2 in{

x′(t) = a1x− b1x2 − c1xy
y′(t) = a2y − b2y2 − c2xy.

(b) Nonlinear pendulum (undamped: θ′′ + ω2 sin(θ) = 0, damped: θ′′ + cθ′ + ω2 sin(θ) = 0):
infinitely many critical points.

9. Separatrix.

2 Reading assignment

Read chapters 10 and 11 from the book.
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3 Problem set (due Thursday December 10 2015)

1. The matrix A =

(
4 −10
2 −4

)
has an eigen-

value λ1 = 2i and a corresponding eigen-

vector v =

(
2 + i
1

)
.

(a) Find the real solution of the system
w′ = Aw.

(b) Each trajectory is an ellipse. Write
down the parametric equations of
these ellipses: x(t) = ... and y(t) = ....

(c) Along which directions are the major
and minor axis of these ellipses are?
(Does the eigenvector tell you any in-
formation about this?)

(d) Use a graphing utility to plot the co-
ordinates x(t) and y(t) as a function
of t, when the initial conditions are
x(0) = −4 and y(0) = −1.

(e) Plot the phase portrait.

2. Analyze the type and stability of the crit-
ical points of the following predator-prey
ecological system, then plot a phase por-
trait showing all interactions and the sepa-
ratrices if any.{

x′(t) = 7x− x2 − 2xy

y′(t) = y − y2 + 2xy.

3. Analyze the type and stability of the crit-
ical points of the following predator-prey
ecological system, then plot a phase por-
trait showing all interactions and the sepa-
ratrices if any.

{
x′(t) = 200x− 4xy

y′(t) = −150y + 2xy.

Find the analytical solution f(x, y) = C to
show that one of the critical points for the
nonlinear system above is in fact a center,
since it is a sensitive case. You may need a
graphing utility or MATLAB for the con-
tour plot of f(x, y).

4. Consider the damped nonlinear pendulum

θ′′ + 0.1θ′ + sin(θ) = 0.

Transform into a first order system, find
the critical points, linearize to study the
types and the stability of the critical points,
then plot a phase portrait, showing the sep-
aratrices.

4 Graphing and computing

1. For number (3) above, use MATLAB to find the contour plot for the analytical solution
f(x, y) = C of the system.

2. Use a phase portrait graphing utility to plot the phase portraits of the systems in problems
1, 2, 3 and 4 above, hence confirming your predictions.
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