Math 336 Ordinary Differential Equations Written Assignment 5

Systems of Differential Equations (Linear, Nonlinear)

1 Concepts

1. Transforming higher order equations to first order systems (linear or nonlinear).

1.1 First order linear systems

1. Expressing linear systems in matrix and vector notation w’ = Aw + f and vice versa.

2. The eigenvalue method to solve linear systems: If w = ver solves the homogeneous linear
system w’ = Aw, then A must be an eigenvalue of A with corresponding eigenvalue A. So the
method tells us to find the eigenvalues of A using det(A—\I) = 0, then find the corresponding
eigenvectors.

These cases may happen:

(a) distinct eigenvalues: then the solution is the linear combination of v;eit.

e In the case of complex eigenvalues, since the coefficient matrix is real, they come in
conjugate pairs A2 = a £ bi. To find the two real solutions associated with this
pair, use only one complex eigenvalue and its corresponding eigenvector, ve®et =
ve®(cos(bt) + isin(bt)) then multiply, separate the real and imaginary parts of the
resulting vector solution, these will be the desired real solutions.

(b) repeated real eigenvalues:

i. producing enough eigenvectors: the solution is the linear combination of ﬂekt.
ii. not producing enough eigenvectors: Not required in Math 336, but the phase portrait
is required (very improper node).

(c) repeated complex eigenvalues: not required in Math 336. Note that the matrix has to
be at least 4 x 4 for this to happen.

3. Plotting solutions:
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x
(a) Plot each coordinate of | y(¢) | asa function of t. Note that periodic solutions produce

z(t)

closed paths in the phase portrait.

(b) Phase portraits and stability: eigenvalues real (proper nodes and very improper nodes
(N's equal), improper nodes, saddles); eigenvalues complex (centers or spirals).

4. Nonhomogeneous system? Need to find a particular solution w,, and add it to the complimen-
tary solution.

5. Numerical methods: Euler, Improved Euler, Runge Kutta.



1.2 First order nonlinear systems
(t) = F(x,y)
Autonomous system { e
y'(t) = G(z,y).
1. Critical points: RHS= 0.
2. Isolated critical points and equilibrium solutions (note that 0 is the only critical point for a
. xl(t) = aix + by ( a1 b )
homogeneous linear system " whenever det 0).
& Y { y(t) = ar + by, az by 7 0)
3. Linearizing around a critical point (z*,y*), x = * + u and y = y* + v, we get
W(t) = au + bv + f(u,v),
V(t) = au + bv + g(u,v).

4. Simple critical point at (0,0): isolated and remainder goes to zero, that is, lim,, ) (0,0) % =
0 and limy, )5 (0,0) gégf})z = 0. This condition is sufficient to guarantee that the linearized
system is a good approximation of the original nonlinear system:

e Find the type and stability of the critical point of the linearized system.
e This will be the same as for the nonlinear system, except possibly in two sensitive cases:
(a) Eigenvalues real and equal: linearized system node, nonlinear system either node or
spiral point (stability determined by the sign of A} = A2).
(b) Eigenvalue purely imaginary: linearized system center, nonlinear system either center
or spiral point (could be stable, asymptotically stable, or unstable).
In these sensitive cases, determining the analytical implicit solution by attempting to
solve % = ggzg maybe helpful, even though it defeats the purpose in a way (see
problem (2) below).
5. Using the Jacobian J(z,y) = < w(7,y)  Fy(z,y) ) to linearize about critical points.
Ge(z,y) Gy(z,y)

6. Big picture phase portrait.

7. Limit cycles?

8. Applications:

(a) Ecological models: Interaction of logistic population- competition, cooperation, predation-
depending on the signs of ¢; and ¢y in

2 (t) = a1z — biz? — cray
Y (t) = azy — bay® — comy.

(b) Nonlinear pendulum (undamped: 6” 4 w?sin(#) = 0, damped: 6" + cf’ + w?sin() = 0):
infinitely many critical points.

9. Separatrix.

2 Reading assignment

Read chapters 10 and 11 from the book.



3 Problem set (due Thursday December 10 2015)

4 _1 K . _
1. The matrix A — 0 has an eigen- 3. .Analyz.e the type and stgblhty of the crit
2 -4 ical points of the following predator-prey
value \j = 21 and a corresponding eigen- ecological system, then plot a phase por-
vector v = < 2+ ) trait showing all interactions and the sepa-

1 ratrices if any.

(a) Find the real solution of the system
w' = Aw. 2’ (t) = 200z — 4xy
(b) Each trajectory is an ellipse.. Write Y (t) = —150y + 2z,
down the parametric equations of
these ellipses: z(t) = ... and y(t) = ....

(c) Along which directions are the major Find the analytical solution f(z,y) = C to
and minor axis of these ellipses are? show that one of the critical points for the
(Does the eigenvector tell you any in- nonlinear system above is in fact a center,
formation about this?) since it is a sensitive case. You may need a

graphing utility or MATLAB for the con-

d) Use a graphing utility to plot the co-
@) STaptiig yop tour plot of f(z,y).

ordinates z(t) and y(t) as a function

of ¢, when the initial conditions are

x(0) = —4 and y(0) = —1. 4
(e) Plot the phase portrait.

. Consider the damped nonlinear pendulum

2. Analyze the type and stability of the crit- 0" +0.16' 4 sin(0) = 0.
ical points of the following predator-prey
ecological system, then plot a phase por-
trait showing all interactions and the sepa-
ratrices if any.

Transform into a first order system, find

the critical points, linearize to study the

) ) types and the stability of the critical points,

o' (t) = Tw — 2" — 2xy then plot a phase portrait, showing the sep-
y(t) =y — 1y + 2xy. aratrices.

4 Graphing and computing

1. For number (3) above, use MATLAB to find the contour plot for the analytical solution
f(z,y) = C of the system.

2. Use a phase portrait graphing utility to plot the phase portraits of the systems in problems
1, 2, 3 and 4 above, hence confirming your predictions.



