1. (1 pt) Library/274/Lin1stord/prob7.pg

Solve the following initial value problem:

$$
\frac{d y}{d t}+0.5 t y=5 t
$$

with $y(0)=6$.
$y=$ \qquad
2. (1 pt) Library/274/Lin1stord/prob2.pg

Find the particular solution of the differential equation

$$
\frac{d y}{d x}+y \cos (x)=4 \cos (x)
$$

satisfying the initial condition $y(0)=6$.
Answer: $y(x)=$ \qquad
3. (1 pt) Library/274/Exact/prob5.pg

The differential equation

$$
y+2 y^{5}=\left(y^{4}+4 x\right) y^{\prime}
$$

can be written in differential form:

$$
M(x, y) d x+N(x, y) d y=0
$$

where
$M(x, y)=$ \qquad , and $N(x, y)=$ \qquad
The term $M(x, y) d x+N(x, y) d y$ becomes an exact differential if the left hand side above is divided by y^{5}. Integrating that new equation, the solution of the differential equation is $=C$.
4. (1 pt) Library/274/Exact/prob3.pg

Use the "mixed partials" check to see if the following differential equation is exact.

If it is exact find a function $F(x, y)$ whose differential, $d F(x, y)$ gives the differential equation. That is, level curves $F(x, y)=C$ are solutions to the differential equation:

$$
\frac{d y}{d x}=\frac{-4 x^{3}-4 y}{4 x-y^{4}}
$$

First rewrite as

$$
M(x, y) d x+N(x, y) d y=0
$$

where $M(x, y)=$ \qquad $-$
and $N(x, y)=$ \qquad

If the equation is not exact, enter not exact, otherwise enter in $F(x, y)$ as the solution of the differential equation here
\qquad $=C$.

5. (1 pt) Library/274/Exact/prob1.pg

Use the "mixed partials" check to see if the following differential equation is exact.
If it is exact find a function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ whose differential, $d F(x, y)$ is the left hand side of the differential equation. That is, level curves $F(x, y)=C$ are solutions to the differential equation:

$$
\left(4 x^{4}+4 y\right) d x+\left(1 x-1 y^{1}\right) d y=0
$$

First:
$M_{y}(x, y)=$ \qquad , and $N_{x}(x, y)=$ \qquad
If the equation is not exact, enter not exact, otherwise enter in $F(x, y)$ here
6. (1 pt) Library/Rochester/setDiffEQ3Separable/ns7_4_13a.pg

Find an equation of the curve that satisfies

$$
\frac{d y}{d x}=78 y x^{12}
$$

and whose y-intercept is 6 .
$y(x)=$ \qquad
7. (1 pt) Library/Rochester/setDiffEQ3Separable/ur_de_3_3.pg

The differential equation

$$
64 \frac{d y}{d x}=\left(25-x^{2}\right)^{-1 / 2} \exp (-8 y)
$$

has an implicit general solution of the form $F(x, y)=K$.
In fact, because the differential equation is separable, we can define the solution curve implicitly by a function in the form

$$
F(x, y)=G(x)+H(y)=K
$$

Find such a solution and then give the related functions requested.
$F(x, y)=G(x)+H(y)=$
8. (1 pt) Library/Rochester/setDiffEQ3Separable/ns7_4_3a.pg Solve the seperable differential equation

$$
5 y y^{\prime}=x
$$

Use the following initial condition: $y(5)=10$.
Express x^{2} in terms of y.
$x^{2}=$ \qquad (function of y).
9. (1 pt) Library/Rochester/setDiffEQ3Separable/ur_de_3_16.pg

Solve the separable differential equation

$$
\frac{d x}{d t}=x^{2}+\frac{1}{16}
$$

and find the particular solution satisfying the initial condition

$$
x(0)=6 \text {. }
$$

$x(t)=$ \qquad
10. (1 pt) Library/Rochester/setDiffEQ3Separable/ns7_4_8.pg Solve the differential equation

$$
\left(y^{17} x\right) \frac{d y}{d x}=1+x
$$

Use the initial condition $y(1)=3$.
Express y^{18} in terms of x.
$y^{18}=$ \qquad
11. (1 pt) Library/Rochester/setDiffEQ3Separable/ns7_4_10.pg Solve the separable differential equation

$$
11 x-4 y \sqrt{x^{2}+1} \frac{d y}{d x}=0
$$

Subject to the initial condition: $y(0)=6$.
$y=$
SOLUTION:
SOLUTION:

SOLUTION: (Instructor solution preview: show the student solution after due date.)

Solution:

First separate the variables:
$11 x=4 y \sqrt{x^{2}+1} \frac{d y}{d x}$
$\frac{11 x}{\sqrt{x^{2}+1}} d x=4 y d y$
Now integrate both sides:
$\int \frac{11 x}{\sqrt{x^{2}+1}} d x=\int 4 y d y$
On the left hand side, make the substitution $u=x^{2}+1, d u=$ $2 x d x, \frac{1}{2} d u=x d x$, then
$\int \frac{11 x}{\sqrt{x^{2}+1}} d x=\int \frac{5.5}{\sqrt{u}} d u=5.5 \frac{\sqrt{u}}{1 / 2}+C$
$=11 \sqrt{u}+C=11 \sqrt{x^{2}+1}+C$.
Thus we have
$11 \sqrt{x^{2}+1}+C=2 y^{2}$
$y^{2}=\frac{11}{2} \sqrt{x^{2}+1}+\frac{C}{2}$
$y^{2}=\frac{11}{2} \sqrt{x^{2}+1}+K$.
$y= \pm \sqrt{\frac{11}{2} \sqrt{x^{2}+1}+K}$.
We need $y(0)=6$, so we have to use + , and we find K from $6=\sqrt{\frac{11}{2} \sqrt{0^{2}+1}+K}:$
$36=\frac{11}{2}+K$
$K=36-\frac{11}{2}=30.5$.
Therefore the solution is $y=\sqrt{\frac{11}{2} \sqrt{x^{2}+1}+30.5}$.

12. (1 pt) Library/Rochester/setDiffEQ3Separable/ur_de_3_15.pg

 Solve the separable differential equation$$
\frac{d y}{d x}=\frac{-0.4}{\cos (y)}
$$

and find the particular solution satisfying the initial condition

$$
y(0)=\frac{\pi}{2}
$$

$y(x)=$ \qquad
13. (1 pt) Library/Rochester/setDiffEQ3Separable/jas7_4_5b.pg

Solve the separable differential equation for u

$$
\frac{d u}{d t}=e^{5 u+9 t}
$$

Use the following initial condition: $u(0)=-5$.
$u=$ \qquad
14. (1 pt) Library/UMN/calculusStewartCCC/s_7_3_prob01.pg Find the solution of the differential equation $\frac{d y}{d x}=y^{2}+4$ that satisfies the initial condition $y(2)=0$.

Answer: $y(x)=$ \qquad
15. (1 pt) Library/FortLewis/DiffEq/1-First-order/04-Linear-integrating-factor/KJ-2-2-37.pg
(1) Find the solution to the initial value problem

$$
\frac{y^{\prime}-e^{-t}+5}{y}=-5, \quad y(0)=-2
$$

(2) Discuss the behavior of the solution $y(t)$ as t becomes large. Does $\lim _{t \rightarrow \infty} y(t)$ exist? If the limit exists, enter its value. If the limit does not exist, enter $D N E$.
$\lim _{t \rightarrow \infty} y(t)=$ \qquad

16. (1 pt) Library/FortLewis/DiffEq/1-First-order/02-Slope-fields/KJ-

 1-3-14.pgConsider the slope field shown.
(a) For the solution that satisfies $y(0)=0$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad
(b) For the solution that satisfies $y(0)=1$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad
(c) For the solution that satisfies $y(0)=-1$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad

17. (1 pt) Library/FortLewis/DiffEq/1-First-order/02-Slope-fields/KJ-1-3-16.pg

Consider the slope field shown.
(a) For the solution that satisfies $y(0)=0$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad
(b) For the solution that satisfies $y(0)=1$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad
(c) For the solution that satisfies $y(0)=-1$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad

18. ($\mathbf{1} \mathbf{~ p t) ~ L i b r a r y / F o r t L e w i s / D i f f E q / 1 - F i r s t - o r d e r / 0 2 - S l o p e - f i e l d s / K J - ~}$ 1-3-18.pg

Consider the slope field shown.
(a) For the solution that satisfies $y(0)=0$, sketch the solution curve and estimate the following:
$y(1) \approx$ \qquad and $y(-1) \approx$ \qquad
(b) For the solution that satisfies $y(0)=1$, sketch the solution curve and estimate the following:
$y(0.5) \approx$ \qquad and $y(-1) \approx$ \qquad
(c) For the solution that satisfies $y(0)=-1$, sketch the solution curve and estimate the following: $y(1) \approx$ \qquad and $y(-1) \approx$ \qquad

19. (1 pt$)$ Library/FortLewis/DiffEq/1-First-order/08-Existence-uniqueness/KJ-2-1-06.pg
Put the differential equation $4 t y+e^{t} y^{\prime}=\frac{y}{t^{2}+16}$ into the form $y^{\prime}+p(t) y=g(t)$ and find $p(t)$ and $g(t)$.
$p(t)=$ \qquad
$g(t)=$ \qquad

Is the differential equation $4 t y+e^{t} y^{\prime}=\frac{y}{t^{2}+16}$ linear and homogeneous, linear and nonhomogeneous, or nonlinear?

Answer: ?
20. (1 pt$)$ Library/FortLewis/DiffEq/1-First-order/08-Existence-uniqueness/KJ-2-1-16.pg
Consider the initial value problem

$$
2 t y^{\prime}=4 y, \quad y(-2)=-4
$$

(1) Find the value of the constant C and the exponent r so that $y=C t^{r}$ is the solution of this initial value problem. $y=$ \qquad
(2) Determine the largest interval of the form $a<t<b$ on which the existence and uniqueness theorem for first order linear differential equations guarantees the existence of a unique solution.
\qquad
(3) What is the actual interval of existence for the solution (from part a)?
21. (1 pt) Library/FortLewis/DiffEq/1-First-order/01-Integrals-as-solutions/Lebl-1-1-09.pg
A spaceship is traveling directly away from earth with speed $6 t^{2}+1 \mathrm{~km} / \mathrm{s}$. At time $t=0$ is is 1500 km from earth. How far is it from earth one minute after time $t=0$? Include units in your answer.

Distance $=$ \qquad
22. (1 pt) Library/FortLewis/DiffEq/1-First-order/01-Integrals-as-solutions/Lebl-1-1-08.pg
Solve $y^{\prime \prime}=\sin (x)$ if $y(0)=0$ and $y^{\prime}(0)=8$.
$y(x)=$ \qquad
23. (1 pt) Library/FortLewis/DiffEq/1-First-order/03-Separable/Lebl-1-3-01.pg
Solve the differential equation $\frac{d y}{d x}=\frac{x}{4 y}$.
(1) Find an implicit solution and put your answer in the following form:

$$
=\text { constant }
$$

(2) Find the equation of the solution through the point $(x, y)=(-2,1)$.
(3) Find the equation of the solution through the point $(x, y)=(0,-4)$. Your answer should be of the form $y=f(x)$.
24. (1 pt) Library/maCalcDB/setDiffEQ3Separable/ns7_4_10.pg

Solve the separable differential equation

$$
10 x-3 y \sqrt{x^{2}+1} \frac{d y}{d x}=0
$$

Subject to the initial condition: $y(0)=10$.
$y=$ \qquad

25. (1 pt) Library/Michigan/Chap11Sec4/Q43.pg

Find the general solution to the differential equation modeling how a person learns:

$$
\frac{d y}{d t}=100-y
$$

Then find the particular solutions with the following initial conditions:
$y(0)=5: y=$ \qquad $y(0)=125: y=$ \qquad
Plot the slope field of this differential equation and sketch the solutions with $y(0)=5$ and $y(0)=125$.

Which of these two particular solutions could represent how a person learns?

- A. $y(0)=5$
- B. $y(0)=125$
- C. either of these
- D. none of the above

SOLUTION:

SOLUTION: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Separating variables and integrating gives

$$
\int \frac{1}{100-y} d y=\int d t
$$

so that

$$
-\ln |100-y|=t+C
$$

or

$$
y(t)=100-A e^{-t}
$$

Thus with the initial condition $y(0)=5$ we must have $5=$ $100-A$, or $A=100-5=95$. Similarly, if $y(0)=125, A=$ $100-125=-$. Thus the two particular solutions are

$$
y=100-95 e^{-t} \quad \text { and } \quad y=100+25 e^{-t}
$$

The slope field and graphs of the two solutions (that with $y(0)=5$ in blue and the other in red) is shown below.

(Click on the graph for a larger version.)
Because the second solution would require a person to start off knowing more than 100 percent of the information, the first is that which could represent how a person learns.

