1. (1 pt) Library/FortLewis/Calc2/10-2-Taylor-series/Taylor-series-

 04.pgFind the first five terms of the Taylor series for the function $f(x)=\ln (x)$ about the point $a=9$. (Your answers should include the variable x when appropriate.)
$\ln (x)=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$
...
2. (1 pt$)$ Library/FortLewis/Calc2/10-2-Taylor-series/Taylor-series05.pg

Find the first three nonzero terms of the Taylor series for the function $f(x)=\sqrt{6 x-x^{2}}$ about the point $a=3$. (Your answers should include the variable x when appropriate.)

$$
\begin{aligned}
& \sqrt{6 x-x^{2}}=\square+\square \\
& +\ldots
\end{aligned}
$$

3. (1 pt) Library/FortLewis/Calc2/9-5-Power-series/power-series-01.pg Find all the values of x such that the given series would converge.

$$
\sum_{n=1}^{\infty} \frac{7^{n}(x-3)^{n}(n+1)}{n+9}
$$

Answer: \qquad
Note: Give your answer in interval notation.
4. (1 pt) Library/FortLewis/Calc2/10-1-Taylor-polynomials/Taylor-polynomials-01.pg
Find the degree 3 Taylor polynomial approximation to the function $f(x)=3 \ln (\sec (x))$ about the point $a=0$.
$3 \ln (\sec (x)) \approx$
5. (1 pt$)$ Library/Rochester/setDiffEQ9Linear2ndOrderHomog/ur_de_9_18.pg
Find y as a function of x if

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}-14 y=0
$$

$y(1)=0, y^{\prime}(1)=10$.
$y=$
6. ($\mathbf{1}$ pt) Library/Rochester/setDiffEQ9Linear2ndOrderHomog/ur_de_9_19.pg
Find y as a function of x if

$$
x^{2} y^{\prime \prime}+15 x y^{\prime}+49 y=0
$$

$y(1)=-1, \quad y^{\prime}(1)=3$.
$y=$
7. (1 pt) Library/Rochester/setSeries8Power/eva8_5a_1.pg

Find the interval of convergence for the given power series.

$$
\sum_{n=1}^{\infty} \frac{(x-7)^{n}}{n(-4)^{n}}
$$

The series is convergent from $x=$ \qquad , left end included (enter Y or N): \qquad to $x=$ \qquad right end included (enter Y or N):
8. (1 pt) Library/Rochester/setSeries8Power/eva8_5a_2.pg

Find all the values of x such that the given series would converge.

$$
\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{n^{10}}
$$

The series is convergent
from $x=$ \qquad , left end included (enter Y or N): \qquad to $x=$ \qquad right end included (enter Y or N): \qquad
9. (1 pt) Library/Rochester/setSeries8Power/eva8_5a_3.pg

Find all the values of x such that the given series would converge.

$$
\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{3^{n}}
$$

The series is convergent
from $x=$ \qquad , left end included (enter Y or N): \qquad to $x=$ \qquad right end included (enter Y or N):
10. (1 pt) Library/Rochester/setSeries8Power/eva8_5a_4.pg Find all the values of x such that the given series would converge.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{9^{n}\left(n^{2}+8\right)}
$$

The series is convergent
from $x=\ldots$, left end included (enter Y or N): \qquad to $x=\ldots$, right end included (enter Y or N): \qquad

11. (1 pt) Library/Rochester/setSeries8Power/eva8_6b.pg

 The function $f(x)=\frac{3}{(1-10 x)^{2}}$ is represented as a power series$f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$.
Find the first few coefficients in the power series.
$c_{0}=$ \qquad
$c_{1}=$ \qquad
$c_{2}=$ \qquad
$c_{3}=$ \qquad
$c_{4}=$ \qquad
Find the radius of convergence R of the series.

$$
R=\underline{\longrightarrow} .
$$

12. (1 pt) Library/Rochester/setSeries8Power/eva8_6g.pg

The function $f(x)=4 x \ln (1+x)$ is represented as a power series $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$.
Find the FOLLOWING coefficients in the power series.

$$
\begin{aligned}
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& c_{5}= \\
& c_{6}= \\
& \hline
\end{aligned}
$$

Find the radius of convergence R of the series.
$R=$ \qquad

13. (1 pt) Library/Rochester/setSeries8Power/powerseries.pg

 POWER SERIES AND TAYLOR POLYNOMIALS
Power Series

A power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has a RADIUS OF CONVERGENCE r.
The series converges for $|x|<r$ and diverges for $|x|>r$. The radius of convergence is usually calculated by the ratio test,
applied to the terms of the power series.
Suppose that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists. Then the power series converges if
$|x| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ and diverges if $|x| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$. The radius of convergence is $r=\left(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\right)^{-1}$.
To determine whether the power series converges when $x=r$, replace x by r in the power series and decide whether the resulting numerical series, $\sum_{n=0}^{\infty} a_{n} r^{n}$ converges. The ratio test will not help in deciding this. Use some other convergence test.
To determine whether the power series converges when $x=-r$, proceed analogously.

Taylor and MacLaurin series
If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges in some interval $(-s, s)$ containing the point zero, then for each n :
$a_{n}=\frac{1}{n!} f^{(n)}(0)$.
Power series may be integrated or differentiated term by term.
That is:
$\frac{d f}{d x}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$.
$\int_{0}^{x} f(t) d t=\sum_{n=1}^{\infty}\left(\frac{1}{n}\right) a_{n-1} x^{n}$.
The nth degree MacLaurin polynomial for $\mathrm{f}(\mathrm{x})$ is
$T_{n}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} x^{j}$
It approximates $\mathrm{f}(\mathrm{x})$ with error $R_{n}(x)$.
That is, $f(x)=T_{n}(x)+R_{n}(x)$. The size of the error is estimated by
$\left|R_{n}(x)\right|<M \frac{|x|(n+1)}{(n+1)!}$.
Here, M is an upper bound for the ($n+1$)-st derivative of f between 0 and x. It is enough that
$\left|f^{(n+1)}(t)\right|<M$ for all t such that $|t|<|x|$.
For every statement above you should know the analogous statement for a power series in powers of $(x-c)$ which has the form $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$.

To receive a point enter the letter y . answer \qquad

