1. (1 pt) Library/FortLewis/DiffEq/3-Linear-systems/01-Intro-to-systems/KJ-4-1-13-multians.pg
Let

$$
A(t)=\left[\begin{array}{rr}
2 & \ln (|t|) \\
\sqrt{4-t} & e^{3 t}
\end{array}\right]
$$

(1) Find $A^{\prime}(t)$.

$$
A^{\prime}(t)=\left[\begin{array}{ll}
\square & \square
\end{array}\right]
$$

(2) Find $A^{\prime}(t)$.

$$
A^{\prime \prime}(t)=\left[\begin{array}{ll}
\square & \square
\end{array}\right]
$$

(3) $A(t)$ is defined for all t in the interval \qquad
$A^{\prime}(t)$ is defined for all t in the interval \qquad
$A^{\prime \prime}(t)$ is defined for all t in the interval
2. $\quad\left(\begin{array}{lll}1 & \mathrm{pt}\end{array}\right) \quad$ Library/Rochester/setDiffEQ6AutonomousStability/ur_de_6_1.pg
The graph of the function $f(x)$ is

(the hori-
zontal axis is x .)
Consider the differential equation $x^{\prime}(t)=f(x(t))$.
List the constant (or equilibrium) solutions to this differential
equation in increasing order and indicate whether or not these equations are stable, semi-stable, or unstable.

3. (1 pt) Library/Rochester/setDiffEQ6AutonomousStability/ur_de_6.2.pg
The graph of the function $f(x)$ is

(the hori-
zontal axis is x .)
Given the differential equation $x^{\prime}(t)=f(x(t))$.
List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equations are stable, semi-stable, or unstable.

4. (1 pt) Library/Rochester/setDiffEQ6AutonomousStability/ur_de_6.3.pg
Given the differential equation $x^{\prime}=-(x+2.5) *(x+0.5)^{3}(x-$ $1)^{2}(x-2)$.
List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equations are stable, semi-stable, or unstable. (It helps to sketch the graph. xFunctions will plot functions as well as phase planes.)
$\begin{array}{r}? \\ \square \\ \hline ?\end{array}$

5. (1 pt$)$ Library/Rochester/setDiffEQ6AutonomousStability/ur_de_6.4.pg
Given the differential equation $x^{\prime}(t)=-x^{4}+3 x^{3}+8 x^{2}-12 x-$ 16.

List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equations are stable, semi-stable, or unstable. (It helps to sketch the graph. xFunctions will plot functions as well as phase planes.)

6. ($1 \quad$ pt) Library/Rochester/setDiffEQ13Systems1stOrder/ur_de_13_1.pg
Write the given second order equation as its equivalent system of first order equations.

$$
u^{\prime \prime}+8 u^{\prime}+4 u=0
$$

Use v to represent the "velocity function", i.e. $v=u^{\prime}(t)$.
Use v and u for the two functions, rather than $u(t)$ and $v(t)$. (The latter confuses webwork. Functions like $\sin (t)$ are ok.)
$u^{\prime}=$ \qquad
$v^{\prime}=$ \qquad
Now write the system using matrices:
$\frac{d}{d t}\left[\begin{array}{l}\mathrm{u} \\ \mathrm{v}\end{array}\right]=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{l}\mathrm{u} \\ \mathrm{v}\end{array}\right]$.
7. ($1 \quad$ pt) Library/Rochester/setDiffEQ13Systems1stOrder/ur_de_13.9.pg
Consider the following model for the populations of rabbits and wolves (where R is the population of rabbits and W is the population of wolves).

$$
\begin{aligned}
\frac{d R}{d t} & =0.05 R(1-0.00025 R)-0.000703125 R W \\
\frac{d W}{d t} & =-0.05 W+0.000125 R W
\end{aligned}
$$

Find all the equilibrium solutions:
(a) In the absence of wolves, the population of rabbits approaches \qquad
(b) In the absence of rabbits, the population of wolves approaches \qquad -.
(c) If both wolves and rabbits are present, their populations approach $r=$ \qquad and $w=$ \qquad -.
8. ($1 \quad$ pt $)$ Library/Rochester/setDiffEQ13Systems1stOrder/ur_de_13_11.pg
Solve the system
$\frac{d x}{d t}=\left[\begin{array}{ll}8 & -4 \\ 4 & -2\end{array}\right] x$
with the initial value $x(0)=\left[\begin{array}{l}-11 \\ -10\end{array}\right]$.
$x(t)=[\square$.
9. (1 pt) Library/Rochester/setDiffEQ13Systems1stOrder/ur_de_13_12.pg
Consider the interaction of two species of animals in a habitat. We are told that the change of the populations $x(t)$ and $y(t)$ can be modeled by the equations

$$
\begin{aligned}
& \frac{d x}{d t}=5 x-2 y \\
& \frac{d y}{d t}=-2 x+2.5 y
\end{aligned}
$$

? 1. What kind of interaction do we observe?
10. ($\left.\begin{array}{l}1 \\ \mathrm{pt}\end{array}\right)$ Library/Rochester/setDiffEQ13Systems1stOrder/ur_de_13_13.pg
Liam opens a bank account with an initial balance of 500 dollars. Let $b(t)$ be the balance in the account at time t. Thus $b(0)=500$. The bank is paying interest at a continuous rate of 5% per year. Liam makes deposits into the account at a continuous rate of $s(t)$ dollars per year. Suppose that $s(0)=500$ and that $s(t)$ is increasing at a continuous rate of 2% per year (Liam can save more as his income goes up over time).
(a) Set up a linear system of the form

$$
\begin{aligned}
\frac{d b}{d t} & =m_{11} b+m_{12} s \\
\frac{d s}{d t} & =m_{21} b+m_{22} s .
\end{aligned}
$$

$m_{11}=$ \qquad
$m_{12}=$ \qquad
$m_{21}=$ \qquad
$m_{22}=$ \qquad
(b) Find $b(t)$ and $s(t)$.
$b(t)=$ \qquad
$s(t)=$ \qquad
11. (1 pt) Library/FortLewis/DiffEq/3-Linear-systems/07-Repeated-eigenvalues/KJ-4-7-29.pg

Match each linear system with one of the phase plane direction fields. (The blue lines are the arrow shafts, and the black dots are the arrow tips.)
? $1 . \begin{aligned} & y_{1}^{\prime}=-y_{1} \\ & y_{2}^{\prime}=2 y_{1}-y_{2}\end{aligned}$
? 2. $\vec{y}^{\prime}=\frac{1}{2}\left[\begin{array}{rr}-0.5 & 0 \\ 0 & -0.5\end{array}\right] \vec{y}$
? 3. $\begin{aligned} & y_{1}^{\prime}=y_{1}+y_{2} \\ & y_{2}^{\prime}=y_{2}\end{aligned}$
? $4 . \vec{y}^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \vec{y}$

A

C

B

D
12. (1 pt) Library/FortLewis/DiffEq/3-Linear-systems/08-Complex-eigenvalues/KJ-4-6-04-multians.pg
Consider the linear system

$$
\vec{y}^{\prime}=\left[\begin{array}{rr}
6 & 4 \\
-10 & -6
\end{array}\right] \vec{y} .
$$

Find the eigenvalues and eigenvectors for the coefficient matrix.

$$
\lambda_{1}=\ldots, \vec{v}_{1}=[-], \text { and } \lambda_{2}=\longrightarrow, \vec{v}_{2}=[\square]
$$

13. ($\mathbf{1} \mathbf{~ p t) ~ L i b r a r y / F o r t L e w i s / D i f f E q / 3 - L i n e a r - s y s t e m s / 0 8 - C o m p l e x - ~}$ eigenvalues/KJ-4-6-13-multians.pg
Suppose A is a 2×2 real matrix with an eigenvalue $\lambda=6 i$ and corresponding eigenvector

$$
\vec{v}=\left[\begin{array}{c}
-1-i \\
1
\end{array}\right] .
$$

Determine a fundamental set (i.e., linearly independent set) of solutions for $\vec{y}^{\prime}=A \vec{y}$, where the fundamental set consists entirely of real solutions.

Enter your solutions below. Use t as the independent variable in your answers.

$$
\left.\begin{array}{l}
\vec{y}_{1}(t)=[\square \\
\vec{y}_{2}(t)=[\square \\
\square
\end{array}\right]
$$

14. (1 pt) Library/FortLewis/DiffEq/3-Linear-systems/08-Complex-eigenvalues/KJ-4-6-14-multians.pg
Suppose A is a 2×2 real matrix with an eigenvalue $\lambda=1+5 i$ and corresponding eigenvector

$$
\vec{v}=\left[\begin{array}{c}
-1+i \\
i
\end{array}\right] .
$$

Determine a fundamental set (i.e., linearly independent set) of solutions for $\vec{y}^{\prime}=A \vec{y}$, where the fundamental set consists entirely of real solutions.

Enter your solutions below. Use t as the independent variable in your answers.

$$
\begin{aligned}
& \vec{y}_{1}(t)=\left[\begin{array}{l}
\square \\
\vec{y}_{2}(t)=[\square \\
\square
\end{array}\right]
\end{aligned}
$$

15. ($\mathbf{1} \mathbf{p t) ~ L i b r a r y / F o r t L e w i s / D i f f E q / 3 - L i n e a r - s y s t e m s / 0 8 - C o m p l e x - ~}$ eigenvalues/KJ-4-6-20-multians.pg
Consider the linear system

$$
\vec{y}^{\prime}=\left[\begin{array}{rr}
3 & 2 \\
-5 & -3
\end{array}\right] \vec{y} .
$$

(1) Find the eigenvalues and eigenvectors for the coefficient matrix.
$\lambda_{1}=\longrightarrow, \vec{v}_{1}=[\square]$, and $\lambda_{2}=\longrightarrow, \vec{v}_{2}=\left[\begin{array}{l}- \\ -\end{array}\right.$
(2) Find the real-valued solution to the initial value problem

$$
\left\{\begin{array}{rll}
y_{1}^{\prime}=3 y_{1}+2 y_{2}, & y_{1}(0)=4 \\
y_{2}^{\prime}= & -5 y_{1}-3 y_{2}, & y_{2}(0)=-10
\end{array}\right.
$$

Use t as the independent variable in your answers.

$$
\begin{aligned}
& y_{1}(t)= \\
& y_{2}(t)= \\
&
\end{aligned}
$$

16. (1 pt) Library/FortLewis/DiffEq/3-Linear-systems/08-Complex-eigenvalues/KJ-4-6-32.pg

Match each initial value problem with the phase plane plot of its solution. (The arrows on the curves indicate how the solution point moves as t increases.)

$$
\begin{aligned}
& \text { ? 1. } \vec{y}^{\prime}=\left[\begin{array}{rr}
1 & -0.5 \\
0.5 & 1
\end{array}\right] \vec{y}, \quad \vec{y}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& \sqrt{?} 2 . \vec{y}^{\prime}=\left[\begin{array}{rr}
-1 & -0.5 \\
0.5 & -1
\end{array}\right] \vec{y}, \quad \vec{y}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& \text { ? 3. } \vec{y}^{\prime}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \vec{y}, \quad \vec{y}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& \text { ? 4. } \vec{y}^{\prime}=\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right] \vec{y}, \quad \vec{y}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{aligned}
$$

C

D

