NYU MathUA-233 Theory of Probability (Summer 2017 Session II)

(Week 1) Mon July 3- Thurs July 6, 2017

1 Week 1 Topics

1.1 Chapter 1: Combinatorial Analysis.

1. The basic and generalized-basic principles of counting (multiplication).
2. Permutations and combinations:

- There are n ! different permutations of n different objects (order matters).
- There are $\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$ different permutations of n objects, for which n_{1} are alike, n_{2} are alike, \ldots, and n_{r} are alike (order matters).
- There are $\binom{n}{r}=\frac{n!}{r!(n-r)!}$ possible combinations of n objects taken r at a time (order does not matter).
- There are $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$ possible divisions of n different objects into r different groups of respective sizes $n_{1}, n_{2}, \ldots, n_{r}$ where $n_{1}+n_{2}+\cdots+n_{r}=n$ (order does not matter).
- $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}, 1 \leq r \leq n$

3. The binomial theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
4. The multinomial theorem: $\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{r}^{n_{r}}$.

1.2 Chapter 2: Axioms of Probability.

1. Set theory: complement; unions; intersections; commutative, associative and distributive laws; DeMorgan's laws (hold for finite, infinite countable, and infinite uncountable sets $\left\{E_{i}\right\}$).
2. Sample space S : Set of all possible outcomes of an experiment (the outcome of the experiments under consideration is not predictable with certainty).
3. Event E : A subset of the sample space: so it's a set of possible outcomes of an experiment. If an outcome of an experiment is contained in E, then we say that E has occurred.
4. Limiting relative frequency definition of probability of an event $E(P(E))$: Repeat the experiment (whose sample space is S) under exactly the same conditions.

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n},
$$

where $n(E)$ is the number of times in the first n repetitions of the experiment that the event E occurs. So $P(E)$ is the limiting relative frequency of E.
5. Axiomatic definition of probability: Consider an experiment whose sample space is S. For each event E of S, we assume that a number $P(E)$ (which we call the probability of the event $E)$ is defined and satisfies the following axioms:

- $0 \leq P(E) \leq 1$,
- $P(S)=1$,
- For any sequence of mutually exclusive events $E_{1}, E_{2}, \ldots, P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$.

6. Probability as a measure on the sample space S.
7. Propositions:
(a) $P\left(E^{c}\right)=1-P(E)$.
(b) If $E \subset F$, then $P(E) \leq P(F)$.
(c) $P(E \cup F)=P(E)+P(F)-P(E F)$.
(d) $P(E \cup F \cup G)=P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)$.
(e) $P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots+(-1)^{r+1} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)+$ $\cdots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right)$, where $\sum_{i_{1}<i_{2}<\cdots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$ is taken over all of the $\binom{n}{r}$ possible subsets of size r of $\{1,2, \ldots, n\}$.
(f) Bonferroni's inequality: $P(E F) \geq P(E)+P(F)-1$.
(g) The probability that exactly one of the events E or F occurs is $P(E)+P(F)-2 P(E F)$.
8. Finite sample spaces with equally likely outcomes: If we assume that all outcomes of an experiment are equally likely (each point in the sample space has the same probability), then for any event E,

$$
P(E)=\frac{\text { number of outcomes in } E}{\text { number of outcomes in } S} .
$$

2 Reading assignment

- Chapter 1 sections: 1.1, 1.2, 1.3, 1.4, 1.5.
- Chapter 2 sections: 2.1, 2.2, 2.3, 2.4, 2.5.

3 Homework Assignments

1. on Mon July 3 lecture: Page 15 ($2,3,10,24,26$). Page 17 (5).
2. on Wed July 5 lecture: Page $48(1,2,3,6,8)$. Page $52(2,4,9)$.
3. on Thurs July 6 lecture: Page $48(11,16,18,21,25,45,55)$. Page $52(6,7,20)$.

4 Test 1 on Thursday July 6

Name:

1. State the limiting relative frequency definition of probability of an event E.
2. State the axiomatic definition of probability of an event E.
3. Prove that if $E \subset F$ then $P(E) \leq P(F)$.
4. Suppose that A and B are mutually exclusive events for which $P(A)=0.3$ and $P(B)=$ 0.5 . What is the probability that A occurs but B does not?
5. Give a combinatorial explanation of the identity $\binom{n}{r}=\binom{n}{n-r}$.
6. Counting:
(a) If 4 Americans, 3 French people, and 3 British people are to be seated in a row, how many seating arrangements are possible when people of the same nationality must sit next to each other?
(b) A student is to answer 7 out of 10 questions in an examination. How many choices has she? How many if she must answer at least 3 of the first 5 questions?
(c) How many 5-digit numbers can be formed from the integers $1,2, \ldots, 9$ if no digit can appear more than twice?
(d) A committee of 6 people is to be chosen from a group consisting of 7 men and 8 women. If the committee must consist of at least 3 women and at least 2 men, how many different committees are possible?
