NYU MathUA-233 Theory of Probability (Summer 2017 Session II)

(Week 2) Mon July 10- Thurs July 13, 2017

1 Week 2 Topics

1.1 Chapter 3: Conditional Probability

Probability: The quantitative study of randomness and uncertainty. Conditioning: The spirit of probability and statistics.

1. Independence: means that the occurrence of one event does not affect the probability of the other:

$$
P(A B)=P(A) P(B)
$$

Independence is different from disjoint (or mutually exclusive).
If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.
Independence of $E_{1}, E_{2}, \ldots, E_{n}$ events: if for any subset $E_{i_{1}}, \ldots, E_{i_{r}}$ of them: $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)=$ $P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{r}}\right)$.
2. Conditional probability: $P(A \mid B)=\frac{P(A B)}{P(B)}$ (assuming $P(B) \neq 0$). This gives the probability of A given that B occurred. Think of this as updating the (unconditional) probability of A when new evidence B becomes available.
3. Prove that $P(A \mid B)=\frac{P(A B)}{P(B)}$ is a probability measure.
4. Multiplication Rule: $P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1}\right)$.
5. The law of total probability: $P(E)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)$ (conditioning on $F_{1}, F_{2}, \ldots, F_{n}$, where F_{i} are mutually exclusive events whose union is the entire sample space). In particular

$$
P(E)=P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)
$$

Think of divide and conquer. Divide the problem into easier subproblems then solve.
How do we choose the events $\left\{F_{i}\right\}$ on which to condition? Choose them based on what you wish you knew in order to find the desired probability.
6. Probability that an event E occurs first (assuming independence in the sense that E or F or $(E \cup F)^{c}$ are the only possible occurrences of the experiment, and that E and F are mutually exclusive): Conditioning on these outcomes leads to $P(E$ occurs first $)=\frac{P(E)}{P(E)+P(F)}$.
7. Bayes's formula: Relates $P(A \mid B)$ to $P(B \mid A)$ (the whole useful (and controversial) Bayesian statistics is based on this formula.)

$$
P(B \mid A)=P(A \mid B) \frac{P(B)}{P(A)}
$$

8. This can be concluded from Bayes's formula: $P\left(F_{j} \mid A\right)=P\left(A \mid F_{j}\right) \frac{P\left(F_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid F_{i}\right) P\left(F_{i}\right)}$ where F_{j} is a partition of the sample space S.
9. Odds of an event $A: \frac{P(A)}{P\left(A^{c}\right)}=\frac{P(A)}{1-P(A)}$. Also we have $\frac{P(H \mid E)}{P\left(H^{c} \mid E\right)}=\frac{P(H) P(E \mid H)}{P\left(H^{c}\right) P\left(E \mid H^{c}\right)}$.
10. Avoid the following common mistakes:

- Confusing disjoint events with independent events.
- Confusing $P(A \mid B)$ with $P(B \mid A)$ and drawing conclusions based on that (accuracy of medical tests, prosecutor's fallacy).
- Confusing $P(A)$ and $P(A \mid B)$.
- Confusing independence with conditional independence (neither implies the other).

11. Famous examples worked out in class:
(a) Casino
(b) Accuracy of medical tests
(c) Prosecutor's fallacy
(d) Three door game
(e) Simpson's paradox
(f) Random walk: Gambler's ruin Conditioning on the first step.

2 Reading assignment

- Chapter 3 sections: 3.1, 3.2, 3.3, 3.4 and 3.5.

3 Homework Assignments

1. on Mon July 10 lecture: Homework from Lecture on Thursday July 6.
2. On Tues July 11 lecture: page $98(6,13,15,28,33,58)$ and page $106(1,2,5)$.
3. on Wed July 12 lecture: page $98(6,13,15,28,33,58)$ and page $106(1,2,5)$.
4. on Thurs July 13 lecture:
(a) Give an example of 3 events A, B, C which are pairwise independent but not independent. (Hint: find an example where whether C occurs is completely determined if we know whether A occurred and whether B occurred, but completely undetermined if we know only one of these things.)
(b) A crime is committed by one of two suspects, A and B. Initially, there is equal evidence against both of them. In further investigation at the crime scene, it is found that the guilty party had a blood type found in 10% of the population. Suspect A does match this blood type, whereas the blood type of Suspect B is unknown.
i. Given this new information, what is the probability that A is the guilty party?
ii. Given this new information, what is the probability that B ?s blood type matches that found at the crime scene?
(c) (Gambler's ruin) A gambler repeatedly plays a game where in each round, he wins a dollar with probability $1 / 3$ and loses a dollar with probability $2 / 3$. His strategy is "quit when he is ahead by $\$ 2$," though some suspect he is a gambling addict anyway. Suppose that he starts with a million dollars. Show that the probability that he?ll ever be ahead by $\$ 2$ is less than $1 / 4$.

4 Test 2 on Thursday July 13

Name:

1. Compute the probability that a hand of 13 cards contains:
(a) The ace and king of at least one suit.
(b) All 4 of at least one of the 13 denominations.
2. A certain family has 6 children, consisting of 3 boys and 3 girls. Assuming that all birth orders are equally likely, what is the probability that the 3 eldest children are the 3 girls?
3. A city with 6 districts has 6 robberies in a particular week. Assume the robberies are located randomly, with all possibilities for which robbery occurred where equally likely. What is the probability that some district had more than 1 robbery?
4. Independence: Is it always true that if A and B are independent events, then A^{c} and B^{c} are independent events? Show that it is, or give a counterexample.
5. In recent years, much has been written about the possible link between cigarette smoking and lung cancer. Suppose that in a large medical center, of all the smokers who were suspected of having lung cancer, 90% of them did, while only 5% of the nonsmokers who were also suspected of having lung cancer actually did. If the proportion of smokers is 0.45 , what is the probability that a lung cancer patient who is randomly selected is a smoker?
6. Prosecutor's fallacy: A crime-scene DNA sample is compared against a database of 20,000 men. A match is found, that man is accused and at his trial, it is testified that the probability that two DNA profiles match by chance is only 1 in 10,000 . This does not mean the probability that the suspect is innocent is 1 in 10,000 .
Show that even if none of the men in the database left the crime-scene DNA, a match by chance to an innocent is almost 86%.
7. Simpson's paradox: Suppose two people, Lisa and Bart, each edit articles for two weeks. In the first week, Lisa fails to improve the only article she edited, and Bart improves 1 of the 4 articles he edited. In the second week, Lisa improves 3 of 4 articles she edited, while Bart improves the only article he edited. Explain how this results in a Simpson's paradox when the totals for the two weeks are added together.
