NYU MathUA-233 Theory of Probability (Summer 2017 Session II)

(Week 5) Mon July 31- Thurs August 3, 2017

1 Jointly Distributed Random Variables (Chapters 6 and 7)

1. Universality of the uniform distribution: Let $X \sim F$ be a continuous random variable with CDF $F(x)$, then the random variable $Y=F(X)$ is uniformly distributed: $Y \sim$ $\operatorname{Unif}(0,1)$. That is equivalent to saying that the CDF of $F^{-1}(U)$ where $U \sim \operatorname{Unif}(0,1)$ is the function F. Therefore, to generate a continuous random variable X with a desired distribution F, all you have to do is generate a random variable $U \sim \operatorname{Unif}(0,1)$, then set $X=F^{-1}(U)$ (so generate a random number u, then set $u=F(x)$, then solve for x).
2. - Joint CDF and marginal CDFs (for both discrete and continuous random variables).

- Joint PDF and marginal PDFs (for continuous random variables).
- Joint PMF and marginal PMFs (for discrete random variables).

3. Independent Random Variables X and Y are independent if knowing the value of one does not change the distribution of the other.
(a) X and Y are independent iff $P(X \leq a, Y \leq b)=P(X \leq a) P(Y \leq b)$ iff $F_{X, Y}(a, b)=$ $F_{X}(a) F_{Y}(b)$ for all $a, b \in \mathbb{R}$. (This is valid for both discrete and continuous random variables.)
(b) For discrete random variables: Independent iff $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all $x, y \in \mathbb{R}$.
(c) For jointly continuous random variables: Independent iff $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all $x, y \in \mathbb{R}$.
(d) The independence of more than two random variables $X_{1}, X_{2}, \ldots, X_{n}$ can be established sequentially: Show X_{2} is independent of X_{1}, then X_{3} is independent of X_{1}, X_{2}, \ldots, then X_{n} is independent of $X_{1}, X_{2}, \ldots, X_{n-1}$.
(e) If X and Y are independent, then for any functions h and $g, E(h(X) g(Y))=E(h(X)) E(g(Y))$. In particular $E(X Y)=E(X) E(Y)$.
4. Sum of independent (and sometimes identically distributed random variables (i.i.d.s)): We need to calculate the distribution of $X_{1}+X_{2}+\cdots+X_{n}$ given that we know the distribution of each of the X_{i} 's, $i=1,2, \ldots, n$.
(a) Convolution: $f * g(a)=\int_{-\infty}^{\infty} f(a-y) g(y) d y=\int_{-\infty}^{\infty} f(y) g(a-y) d y$.
(b) Sum of uniformly distributed i.i.d.s.
(c) Sum of normally distributed independent random variables.

5. Covariance

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-E(X) E(Y)=\mu_{X Y}-\mu_{X} \mu_{Y}
$$

- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$ since in that case $E(X Y)=E(X) E(Y)$. The inverse of this statement need not be true.
- Covariance is bilinear.
- Covariance has same dimension as that of $X Y$.

6. Correlation is normalized covariance (so it is a dimensionless quantity).

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

7. PDF of functions of jointly distributed random variables (Jacobian of the transformation).
8. Expectation of functions of random variables $E(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$.

2 Reading assignment

Chapter 6 sections: 6.1, 6.3, 6.3, 6.7.
Chapter 7 sections: 7.1, $7.2,7.3,7.4,7.7,7.8,7.9$.

3 Homework Assignment

(Due Monday August 7)

1. Page 272 (Problems): 6.22, 6.38, 6.53.
2. Page 275 (Theoretical problems): 6.2, 6.10.
3. Page 354 (Problems): 7.26.
4. Page 359 (Theoretical problems): 7.11, 7.24.
5. A stick is broken into two pieces, at a uniformly random chosen break point. Find the CDF and the average length of the longer piece. (Ans: $L \sim \operatorname{Unif}(1 / 2,1)$ and $E(L)=3 / 4$.)
6. Two students A and B are working independently on homework. Student A takes $Y_{1} \sim$ $\operatorname{Exp}\left(\lambda_{1}\right)$ hours to finish her homework, and student B takes $Y_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ hours to finish the homework.
(a) Find the CDF and PDF of $\frac{Y_{2}}{Y_{1}}$, the ratio of their problem solving times.
(b) Find the probability that A finishes her homework before B does.

4 Test 5 on Thursday August 3, 2017

Name:

1. (1 point) Universality of the Uniform: Let $X \sim F$ be a continuous random variable with distribution function F. Prove that for $Y=F(X), E(Y)=\frac{1}{2}$.
2. (2 points) Distribution of transformation- Jacobian: Let $U \sim \operatorname{Unif}(0,2 \pi)$, and $Z \sim \operatorname{Exp}(1)$ be independent of U.
(a) Find the joint PDF of X and Y defined by $X=\sqrt{2 Z} \cos (U)$ and $Y=\sqrt{2 Z} \sin (U)$.
(b) Deduce that X and Y are independent standard normal random variables.
3. (2 points) Expectation: Let $X, Y \sim \operatorname{Exp}(\lambda)$ be i.i.d. exponentially distributed random variables. Find $E(|X-Y|)$.
4. (1 point) Multinomial distribution: A fair die is rolled 9 times. Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$ be respectively the random variables counting the number of times each of $1,2,3,4,5,6$ appear. Find the joint PMF of $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$. Deduce $P(A)$ where A is the event that 2 appears 3 times, 4 appears 4 times and 6 appears 2 times.
5. (2 points) i.i.d. random variables: Let $U_{1}, U_{2}, U_{3}, U_{4}$ be i.i.d. $\operatorname{Unif}(0,1)$ random variables, and let $L=\min \left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ and $M=\max \left(U_{1}, U_{2}, U_{3}, U_{4}\right)$.
(a) Find the marginal CDF and the marginal PDF of M.
(b) Find the joint CDF and the joint PDF of M, L.
6. (1 point) Covariance and correlation: Two fair six-sided dice are rolled, with outcomes X and Y respectively for die 1 and die 2 .
(a) Compute the covariance of $X+Y$ and $X-Y$.
(b) Are $X+Y$ and $X-Y$ independent? Show that they are or that they aren't.
7. (1 point) Normally distributed random variables: Let $X_{i} \sim N(1,2), i=1,2, \ldots, n$ be i.i.d normally distributed random variables. Find $E\left(4 X_{1}-X_{2}+X_{3}\right)$ and $\operatorname{Var}\left(2\left(X_{1}+X_{2}+\cdots+\right.\right.$ $\left.X_{n}\right)$).
