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Abstract. We study the evolution of a monotone step train separating two facets of a crystal
surface. The model is one-dimensional and we consider only the attachment-detachment-limited
regime. Starting with the well-known ODE’s for the velocities of the steps, we consider the system
of ODE’s giving the evolution of the “discrete slopes.” It is the l

2-steepest-descent of a certain
functional. Using this structure, we prove that the solution exists for all time and is asymptotically
self-similar. We also discuss the continuum limit of the discrete self-similar solution, characterizing
it variationally, identifying its regularity, and discussing its qualitative behavior. Our approach
suggests a PDE for the slope as a function of height and time in the continuum setting. However
existence, uniqueness, and asymptotic self-similarity remain open for the continuum version of the
problem.

1. Introduction

The surface of a crystal below the roughening temperature consists of steps and terraces. Atoms
detach from the steps, diffuse across terraces, and reattach at new locations, inducing an overall
evolution of the crystal surface, see e.g. [2, 11, 18]. It is important to study this evolution, because
the manufacture of crystal films lies at the heart of modern nanotechnology.

Our present understanding is surprisingly incomplete. Asymptotically self-similar behavior has
been observed numerically in a variety of one-dimensional and radial settings [6, 7, 8, 9, 10, 13, 17],
but has rarely been explained. The continuum limit of step evolution has received considerable
attention, see e.g. the references just cited and also [3, 5, 14, 16, 19, 20, 24, 25, 26], but the correct
treatment of the free boundary condition at the edge of a facet remains unclear. Many authors
have suggested using a Mullins-style thermodynamic approach, see e.g. [12, 21, 22, 23], however
there is evidence in the radial setting that this is not consistent with the continuum limit of step
motion [13].

This paper explores the step dynamics and its continuum limit in what is perhaps the simplest
possible setting: a monotone one-dimensional step train connecting two unbounded facets (see
Figure 1) in the attachment-detachment-limited (ADL) regime. (The physics underlying our model,
including the meaning of being attachment-detachment-limited, are explained in Appendix A.) Our
main accomplishments include:
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(a) identification of a natural steepest-descent structure;
(b) a proof that the evolution is asymptotically self-similar as t → ∞ with the number of steps

N held fixed; and
(c) a detailed analysis of the continuum self-similar solution (the limit of the discrete self-similar

solutions as N → ∞).

As noted above, many authors have observed self-similar behavior in step-based models. To the
best of our knowledge, however, we are the first to provide a systematic, mathematically rigorous
explanation. Our viewpoint suggests a PDE for the evolution of the slope profile in the continuum
limit, but we do not prove asymptotic self-similarity in the continuum setting.

h=0

h=1

x (t) x (t)
1 N

Figure 1. Step train connecting two unbounded facets.

Most of the literature on PDE-based models of crystal surfaces focuses on the height as a function
of space and time. Our approach is different: we focus on the slope as a function of height and
time. This viewpoint has several key advantages:

• the steepest-descent structure mentioned above emerges from this viewpoint (combined
with our choice of ADL dynamics);

• there is no free boundary at the edge of a facet, since the slope is defined on a known
interval 0 < h < 1;

• the problem with finitely many steps is a natural finite-difference approximation of a PDE.

We are not the first to focus on the slope as a function of height. Ozdemir and Zangwill used
this viewpoint to great advantage in [17], and our slope PDE (2.9) is precisely the specialization
of their equation (32) to the ADL setting. Their numerical observations included the the existence
and stability of a self-similar solution. Our results complement theirs, by providing (among other
things) a new variational characterization of the self-similar solution and a rigorous proof of its
stability. Other recent papers with a viewpoint similar to ours (focusing on slope as a function of
height) include [5, 6].

PDE methods guide much of our analysis, even in the discrete setting. For example, the fact that
the steps neither collide nor go to infinity in finite time is proved using a simple “energy identity.”
Our proof of self-similarity uses a dynamical-systems-type viewpoint that has been applied to many
PDE’s [1, 4]. Indeed, we show that the evolution “in similarity variables” has a steepest-descent
character, and the associated “energy” is convex. The self-similar solution is its global minimizer,
and the resulting variational characterization provides additional information about its qualitative
properties.

Our analysis is restricted to the ADL regime, where the slope evolution has a convenient steepest-
descent structure. The recent paper [15] is closely related but complementary: it considers a variety
of different physical models (not just ADL), but limits its attention to the self-similar solutions (not
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addressing their stability). By taking the continuum limit N → ∞, [15] identifies the behavior of
the self-similar solution near the boundary h = 0, 1. In the ADL setting its results are entirely
consistent with ours, though its method is entirely different.

The rest of this Introduction gives a brief overview of our viewpoint, methods, and main achieve-
ments. We start in Section 2 by reviewing the step motion law. Then we show (following the lead of

[17]) that the ODE describing the evolution of the discrete slopes yi = 1/N
xi+1−xi

is the finite-difference

analogue of the PDE

(1.1) ut = −u2(u3)hhhh

with boundary conditions u(0, t) = u(1, t) = 0 and (u3)hh(0, t) = (u3)hh(1, t) = 0. The slope
evolution has a convenient steepest-descent structure in both the discrete and continuum settings.
Focusing here on the continuous case: (1.1) does steepest descent for

E(u) =

∫ 1

0

1

6
[(u3)hh]2 dh

subject to u(0) = u(1) = 0, in precisely the same sense that the heat equation does steepest descent
for the Dirichlet integral. The steepest-descent structure is used in Section 2 to prove that steps
cannot collide. We also present some numerics, focusing on the qualitative properties of the step
and slope evolutions in the continuum limit N → ∞ and the large-time limit t → ∞.

Section 3 shows that both the discrete and continuous versions of the problem have self-similar
solutions, and discusses their properties. In the continuum, this amounts to looking for a solution
of (1.1) of the form u(t, h) = t−1/4φ(h). We give a variational characterization of the self-similar
solution and apply it to prove uniqueness. In the continuum, the self-similar solution is not very
smooth near the endpoints h = 0, 1; our results include a detailed characterization of its behavior.

Section 4 proves that the slope evolution is asymptotically self-similar as t → ∞ with N held
fixed. The proof relies on the steepest-descent structure of the evolution rewritten in “similar-
ity variables,” combined with strict positivity of the slope and the uniqueness of the self-similar
solution.

Section 5 analyzes the relationship between our discrete and continuous self-similar solutions.
This amounts to studying the relationship between a certain continuous variational problem and
its finite-difference approximation. The convergence rate is N−5/6 rather than N−1 because the
continuous solution is not very smooth at the endpoints.

We close, in Section 6, with a brief discussion why rigorous analysis of the continuous slope
evolution problem seems to require additional ideas. This section also discusses the apparent
limitations of our slope-oriented, steepest-descent-based viewpoint.

The paper ends with two Appendices. Appendix A reviews the physics behind the step motion
law. Appendix B discusses the relationship between our slope-based viewpoint and the more widely-
used approach in which the surface height h(x, t) solves a PDE with respect to position and time.

Acknowledgement. We thank John Ball for the observation that the energy in similarity variables
is convex when viewed as a function of v = w3.
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2. The Discrete Evolution and the Associated PDE

This section presents the step and slope ODE’s, explaining the crucial steepest-descent structure
of the slope ODE’s and using it to prove global-in-time existence. We also discuss the relation
between the slope ODE’s and the conjectured continuum limit. The section closes with a discussion
of the qualitative behavior of the step and slope equations, focusing on the behavior as N → ∞ or
t → ∞.

2.1. Step and slope ODEs. We are interested in the evolution of a monotone one-dimensional
step train in the attachment-detachment-limited regime. The ODE’s for the step velocities are
well-known (see e.g. [6, 7, 10, 17]). Briefly: adopting the viewpoint originated by Burton, Cabrera,
and Frank [2], one finds the concentration of adatoms on each terrace, and the net flux of adatoms
at each step; this determines the step velocity, by conservation of mass. The full derivation is given
for the reader’s convenience in Appendix A. The upshot is this: let x1(t) < x2(t) < · · · < xN (t) be
the positions of N steps (each of height h = 1/N) separating our two facets (at heights h = 0 and
h = 1 respectively, see Figure 1). Then the “interior” steps evolve by

(2.1) ẋi = µi+1 − 2µi + µi−1, 2 ≤ i ≤ N − 2

where µi (the “chemical potential”) is the first variation of the step interaction energy

(2.2) E =
1

2

N−1
∑

i=1

1

(xi+1 − xi)2
,

with respect to xi. Doing the differentiation, we have:

(2.3) µi =
∂E

∂xi
=







(x2 − x1)
−3 when i = 1

(xi+1 − xi)
−3 − (xi − xi−1)

−3 when 2 ≤ i ≤ N − 2
−(xN − xN−1)

−3 when i = N .

The evolution laws for extreme steps x1 and xN are different, because each has a facet on one side
and a terrace on the other; their velocities are

(2.4) ẋ1 = µ2 − µ1, ẋN = −µN + µN−1.

It will be convenient to focus not on the step positions, but rather on the “discrete slopes”
defined by

(2.5) yi(t) =
1/N

xi+1(t) − xi(t)
, 1 ≤ i ≤ N − 1.

Clearly the step ODE’s imply an evolution law for the slopes. Away from the extremes, a straight-
forward calculation gives

ẏi = −y2
i ∆i∆y3 for i = 3, ..., N − 3

where ∆ξ is the second-order finite difference of ξ = (ξ1, . . . , ξN−1) with respect to height:

(2.6) ∆iξ = N2(ξi+1 − 2ξi + ξi−1).
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At the extremes, the analogous calculation gives

ẏ1 = −y2
1N

2[∆2y
3 − 2N2(y3

2 − 2y3
1)]

ẏ2 = −y2
2N

2[∆3y
3 − 2∆2y

3 + N2(y3
2 − 2y3

1)]

ẏN−2 = −y2
N−2N

2[N2(−2y3
N−1 + y3

N−2) − 2∆N−2y
3 + ∆N−3y

3]

ẏN−1 = −y2
N−1N

2[−2N2(−2y3
N−1 + y3

N−2) + ∆N−2y
3].

This can be written much more elegantly by introducing the conventions

(2.7) y0 = yN = 0 and ∆0y
3 = ∆Ny3 = 0,

so that ∆1y
3 = N2(y3

2 − 2y3
1) and ∆N−1y

3 = N2(−2y3
N−1 + y3

N−2) (using the first convention),

and ∆1∆y3 = N2(∆2y
3 − 2∆1y

3) and ∆N−1∆y3 = N2(−2∆N−1y
3 + ∆N−2y

3) (using the second
convention). With these conventions, the evolution law for the slopes becomes

(2.8) ẏi = −y2
i ∆i∆y3 for i = 1, 2, ..., N − 1.

Since ∆ is the finite-difference Laplacian with respect to height, it is natural to guess that as
N → ∞, our discrete slopes should be converging to a function u(h, t) defined on 0 ≤ h ≤ 1 such
that

(2.9) ut = −u2(u3)hhhh

with boundary conditions u(0, t) = u(1, t) = 0 and (u3)hh(0, t) = (u3)hh(1, t) = 0. Our results are
consistent with this conjecture, though they fall short of proving it.

Since the step and slope ODE’s are highly nonlinear, it is not immediately obvious that they have
a global-in-time solution. The main issue is whether steps can collide. We will rule out collisions
and prove global-in-time existence in Section 2.3.

2.2. Steepest-descent structure. The slope ODE’s (2.8) and their continuum analogue (2.9)
have a natural gradient-flow structure, which is crucial to our analysis. To explain, we focus first
on the ODE’s, and we begin by recalling the definition of an l2 steepest-descent.

Definition. If a and b are vectors in R
d, their l2-inner product is given by 〈a, b〉l2 =

∑d
i=1 aibi. For

any function E : R
d → R, its l2-gradient (denoted by ∂l2E) is the vector-valued function such that

Ė(a) = 〈∂l2E(a), ȧ〉l2 for any curve a(t). The ODE ȧ = f(a) is the l2-steepest descent of E when
f(a) = −∂l2E(a).

Since the slope ODE’s are the finite-difference version of a PDE, their analysis involves the finite-
difference analogue of integration by parts. If ξ = (ξ1, . . . , ξN−1), we use the standard forward and
backward difference operators

D+
i ξ = N(ξi+1 − ξi), D−

i ξ = N(ξi − ξi−1)

and the second-difference operator

∆iξ = N2(ξi+1 − 2ξi + ξi−1)
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(recall that the index indicates height, and the height increment is 1/N). Note that D−
i D+ξ =

D+
i D−ξ = ∆iξ, and D+

i D+ξ = ∆i+1ξ. The analogue of integration by parts is summation by parts:

n
∑

k=m

fkD
+
k g = −

n+1
∑

k=m

gkD
−
k f + Nfn+1gn+1 − Nfm−1gm

which is equivalent to

(2.10)
n

∑

k=m

fkD
+
k g = −

n
∑

k=m

gk+1D
+
k f + Nfn+1gn+1 − Nfmgm.

When ξ0 and ξN are not otherwise defined we take them to be 0, so that ∆1ξ and ∆N−1ξ are
well-defined.

Proposition 2.1. The slope ODE’s (2.8) are the l2-steepest descent of the discrete energy

(2.11) EN (y) =
1

6

N−1
∑

i=1

(∆iy
3)2.

Proof. Recall our convention that ∆0y
3 = ∆Ny3 = 0, so the sum in (2.11) is not changed if we

include the terms associated with i = 0 and/or i = N . This will be useful for the summations
by parts that follow. Consider any smooth evolution (y1(t), . . . , yN−1(t)) and recall the convention
that y0 = yN = 0. Differentiating (2.11) gives

d

dt
EN (y) =

N−1
∑

i=0

∆iy
3 · ∆i(y

2ẏ)

=

N−1
∑

i=0

(∆iy
3)D+

i D−(y2ẏ).

Summing by parts using (2.10) gives

d

dt
EN (y) = −

N−1
∑

i=0

D+
i (∆y3)D+

i (y2ẏ).

The boundary terms ∆Ny3D−
N (y2ẏ)−∆0y

3D−
0 (y2ẏ) vanish since ∆0y

3 and ∆Ny3 are equal to zero.
Summing again by parts, we have

d

dt
EN (y) =

N−1
∑

i=0

D+
i D+(∆y3)(y2

i+1ẏi+1)
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where the boundary terms −D+
N∆y3y2

N ẏN +D+
0 ∆y3y2

0 ẏ0 vanish again since y0 = yN = 0. It follows
that

d

dt
EN (y) =

N−1
∑

i=0

(∆i+1∆y3)y2
i+1ẏi+1

=
N−1
∑

i=1

(∆i∆y3)y2
i ẏi.

The last sum is from 1 to N − 1 since yN = 0. The last equality says

d

dt
EN (y) = 〈y2

i ∆i∆y3, ẏi〉l2 .

Therefore (2.8) (with the conventions y0 = yN = 0 and ∆0y
3 = ∆Ny3 = 0) can be written as

ẏ = −∂l2EN (y).

�

The PDE (2.9) has an analogous steepest-descent structure: it is the L2 steepest-descent associ-
ated with the functional

(2.12) E(u) =

∫ 1

0

1

6
[(u3)hh]2 dh.

Indeed, for any sufficiently smooth u(h, t) we have

Ė(u) =

∫ 1

0
(u3)hh(u2u̇)hh dh

=

∫ 1

0
(u3)hhhhu2u̇ dh + (u3)hh(u2u̇)h

∣

∣

1

0
− (u3)hhhu2u̇

∣

∣

1

0

= 〈(u3)hhhhu2, u̇〉L2 + boundary terms.(2.13)

The boundary conditions u(0, t) = u(1, t) = 0 and (u3)hh(0, t) = (u3)hh(1, t) = 0 assure that
the boundary terms vanish. Thus (2.9) with these boundary conditions can be written as ut =
−∂L2E(u). (In fact, the preceding calculation reveals that if one imposes u(0, t) = u(1, t) = 0 as the
“essential boundary condition,” then (u3)hh(0) = (u3)hh(1) = 0 emerges as the associated “natural

boundary condition,” in the sense that it is required to make the boundary term (u3)hh(u2u̇)h
∣

∣

1

0
vanish. See (3.13) for a more careful discussion.)

These steepest-descent structures will lie at the heart of many of our arguments. In addition,
they demonstrate that the slope ODE’s (2.8) are a natural finite difference discretization of the
slope PDE (2.9), in the sense that (i) the slope ODE’s are the l2-steepest descent of the discrete
energy EN , (ii) the PDE is the L2-steepest descent of the continuum energy E, and (iii) EN is a
finite-difference approximation of E.

The calculation leading to (2.13) was easier than the proof of Proposition 2.1, because integration
by parts is easier than summation by parts. This pattern will recur throughout the paper: our
arguments are usually more transparent in the continuous setting. However we will sometimes be
required to work in the discrete setting to achieve our goals. (For example, in the next subsection
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we will prove that yi(t) stays positive for all t and all 1 ≤ i ≤ N − 1, however we do not know
whether u(h, t) stays positive for all 0 < h < 1.)

It is natural to ask whether the functionals EN (y) and E(u) have physical meaning. The answer
is yes: they give the rate at which the step interaction energy is dissipated. Indeed, in the discrete

setting the interaction energy (defined by (2.2)) is a constant times
∑N−1

i=1 y2
i , so our assertion

follows from

Lemma 2.2. For any solution of the slope ODE’s (2.8), the l2 norm decreases and

(2.14)
d

dt

1

2
‖y‖2

l2 = −6EN (y).

Proof. The functional EN (y) = 1
6

∑

(∆iy
3)2 is homogeneous of degree 6, in the sense that if λy =

(λy1, . . . , λyN−1) then
EN (λy) = λ6EN (y).

Differentiating with respect to λ then evaluating the result at λ = 1 we conclude that

(2.15) 〈y, ∂l2EN (y)〉l2 = 6EN (y).

So for any solution of the slope ODE’s, Proposition 2.1 gives

d

dt

1

2
‖y‖2

l2 = −〈y, ∂l2EN (y)〉l2 = −6EN (y)

as asserted. �

The same argument applies in the continuum setting, where the step interaction energy is rep-

resented by
∫ 1
0 u2 dh. Alternatively, we can simply integrate by parts: using the PDE and its

boundary conditions (and assuming the solution is regular enough to support the integration by
parts) we have

d

dt

1

2

∫ 1

0
u2 dh =

∫ 1

0
uut dh = −

∫ 1

0
u3(u3)hhhh dh = −

∫ 1

0
(u3)2hh dh = −6E(u).

2.3. Global-in-time existence. We are ready to prove that the step and slope ODE’s have a
global-in-time solution.

Theorem 2.3. The step ODE’s (2.1) have a global-in-time solution for any “monotone” initial
data (i.e. any x1(0) < x2(0) < · · · < xN (0)); in particular the steps cannot collide in finite time.
Also, the slope ODE’s (2.8) have a global-in-time solution for any positive initial data (i.e. any
y1(0) > 0, . . . , yN−1(0) > 0); moreover yi remains positive for all time and each i = 1, . . . , N − 1.

Proof. The standard existence theory for ODE’s tells us that the solution of the step ODE’s can
be continued until either (a) the evolution becomes undefined because two steps collide, or (b)
a step reaches infinity in finite time. Alternative (a) cannot occur, because by Lemma 2.2 each
yi = N−1(xi+1 − xi)

−1 remains bounded:

max
1≤i≤N−1

y2
i (t) ≤

N−1
∑

i=1

y2
i (t) ≤

N−1
∑

i=1

y2
i (0).

Alternative (b) is also impossible, because ẋi is a linear combination of µj’s, and

max
1≤i≤N

|µi| ≤ N3 max
1≤i≤N−1

y3
i
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from the definition (2.3) (note that since the steps don’t collide, they stay ordered, so each yi stays
positive). Thus each |ẋi| is bounded by a constant that depends only on the initial data and N .
So the solution of the ODE’s (2.1) for the step positions exists for all time.

The existence of solutions to the slope equations follows from the preceding argument. Indeed,
given positive initial data for the slope ODE’s, we can choose x1(0) < . . . < xN (0) such that
yi = N−1(xi+1 − xi)

−1. Then the solution of the step ODE’s determines a solution of the slope
ODE’s. �

We digress to give another proof of the positivity of yi, using an energy-type argument applied
to the slope ODE’s. (An argument similar to the following will be crucial in Section 4.) Let ∆−1

be the N − 1×N − 1 matrix which is the inverse of the discrete Dirichlet Laplacian ∆, defined by

(2.16) ∆ = N2













−2 1
1 −2 1

1 −2 1
1 −2













N−1×N−1

.

Lemma 2.4. Let 1/y be the vector (y−1
1 , . . . , y−1

N−1). Then every solution of the slope ODE’s satisfies
an estimate of the form

(2.17) ‖∆−1(1/y)‖l2 ≤ Ct + D

where C and D depend only on the initial data. Since ∆ is a bounded operator (with a bound
depending on N), it follows that maxi y−1

i grows at most linearly in time, so each yi stays positive.

Proof. Using the l2 norm and inner product, we have

1

2

d

dt
‖∆−1(1/y)‖2 = 〈∆−1(1/y),∆−1(1/y)t〉.

Now, the slope ODE (2.8) gives (1/y)t = ∆(∆y3). So

1

2

d

dt
‖∆−1(1/y)‖2 = 〈∆−1(1/y),∆−1∆∆y3〉

= 〈∆−1(1/y),∆y3〉

≤ ‖∆−1(1/y)‖ ‖∆y3‖.

Since the evolution is steepest descent for EN = 1
6‖∆y3‖2, the value of EN is monotonically

decreasing. Thus q(t) = ‖∆−1(1/y)‖2 satisfies

1

2
q̇ ≤ Cq1/2

where C is a constant times the initial value of E
1/2
N . Writing this as d

dtq
1/2 ≤ C, we conclude that

q1/2 ≤ Ct + D where D is the initial value of q1/2. �

We suppose the PDE (2.9) should also have a unique global-in-time solution, however we do not
attempt to address that question here.



10 HALA AL HAJJ SHEHADEH, ROBERT V. KOHN, AND JONATHAN WEARE

2.4. Qualitative behavior and numerical evidence of self-similarity. We believe that

(a) there is a well-defined continuum limit as N → ∞;
(b) the continuum height profile h(x, t) “has finite extent” and is asymptotically self-similar;
(c) the continuum slope as a function of height and time is also asymptotically self-similar; and
(d) the discrete evolution with N held fixed is also asymptotically self-similar.

This subsection explains the meaning of these assertions and gives some numerical evidence. The
rest of the paper presents progress toward these goals. Toward (b) and (c), we shall characterize and
discuss the discrete and continuous self-similar solutions. Toward (a), we shall prove convergence
of the self-similar solutions as N → ∞. Assertion (d) will be proved in its entirety.

Assertions analogous to (a)-(d) have been studied for a variety of one-dimensional models like
the one considered here [6, 7, 10, 17] and also in some radial settings [8, 9, 12, 13]. However these
studies are largely numerical or heuristic. We are the first to prove asymptotic self-similarity, to give
a variational characterization of the similarity solution, and to prove convergence of the similarity
solutions as N → ∞. (Alas, our analysis addresses just one of the many cases considered in the
articles just cited.)

As numerical evidence of (a) we point to the smoothness of the profiles shown in Figure 2, which
were obtained by solving the ODE’s with N = 51, using equispaced steps (constant slope 1) as the
initial data. The top half of the figure shows the associated height profiles at the the initial time
(solid), several intermediate times (dotted), and largest time observed (solid). Notice that the step
train spreads, gradually expanding its extent and decreasing its maximum slope. The bottom half

of the figure shows the slope F = hx as a function of x and t, i.e. it plots 1/N
xi+1−xi

against xi+xi+1

2 .

(We denote the slope by F not u to avoid confusion: F is the slope as a function of position and
time, while u is the slope as a function of height and time.) Again, the solid curves show the
slope at the initial and largest times, and the dotted curves show some intermediate times. While
the slope is initially 1, it quickly becomes smoother (approaching 0 at the ends of the step train).
Eventually it becomes concave and settles into a characteristic profile.

The conjecture that the continuum profile has “finite extent” means that as N → ∞ the left-
most and right-most steps have finite limits xL(t) and xR(t). Thus the continuum profile consists
of two facets (one with h = 0 to the left of xL, the other with h = 1 to the right of xR) separated by
a continuous step train (a smoothly-varying height profile h(x, t) defined for xL(t) < x < xR(t)).
For numerical confirmation, we calculated the values of xN (t) − x1(t) as N varies (always using
constant-slope-one initial data, and keeping the time t fixed). The results are given in Table 1.

Table 1. Numerical evidence that the profile “has finite extent” in the continuum
limit: xN (t) − x1(t) at t = 30 for a surface with constant slope at t = 0.

N 10 100 1000 2000 3000
xN − x1 10.486 10.548 9.9787 10.956 11.317

The conjectured self-similarity of the height profile says that as t → ∞,

h(x, t) ∼ H
( x

t1/4

)
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Figure 2. Simulation of the step equations with N = 51. Top: Surface height as
a function of x at various times. Bottom: The discrete slope as a function of x at
various times.

for some function H(z). If so, then F = hx behaves as t−1/4H ′(x/t1/4). Figure 3 provides numerical

confirmation of such behavior, by showing that after an initial transient the profile of t1/4F as a
function of x/t1/4 appears to approach a limit as t → ∞.

As we explained in the Introduction (and in Section 2.1), we prefer to focus on the slope ODE’s
rather than the step ODE’s. They are more convenient due to their simple steepest-descent struc-
ture, and because the continuum limit has no free boundary. In this setting, the conjecture of
asymptotic self-similarity says that as t → ∞, the slope u viewed as a function of height and time
satisfies

u(h, t) ∼ t−1/4φ(h)

for some function φ defined on [0, 1]. Figure 4 shows the behavior of the slope ODE’s (2.8) and
provides graphical evidence of asymptotic self-similarity. In the top left subfigure, we plot yi against
hi = i/N starting with nonsymmetric data (the solid line). The solution quickly becomes smooth
and eventually becomes symmetric and concave. The top right subfigure shows that after scaling yi

by t1/4, the concave curves at later times collapse into a common graph (the self-similar solution).
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Figure 3. Numerical evidence of self-similarity: after scaling x by t−1/4 and
F (x, t) = hx(x, t) by t1/4, slope profiles are asymptotically stationary.

The bottom part of Figure 4 reports the results of a similar calculation with symmetric initial data.
Notice that the approach to self-similarity is much faster in the symmetric setting.

3. The Self-Similar Solution

This section discusses the similarity solution associated with the slope ODE’s and their continuum
analogue. Besides proving existence and uniqueness, we also obtain additional information. In
particular, we show that the cube of the similarity solution is concave, and we prove (in the
continuous setting) that the associated step train “has finite extent.” We shall prove asymptotic
self-similarity for the discrete problem in Section 4, and we shall study the continuum limit of the
similarity solutions in Section 5.

3.1. Introduction of similarity variables. We expect t1/4yi(t) to become independent of t in
the large-time limit. Therefore it is natural to rewrite the slope ODE’s in similarity variables. This
means making the change of variable

(3.1) wi(s) = (1 + t)1/4yi(t), s = log(1 + t).

One verifies that the slope ODE’s (2.8) are equivalent to

(3.2) ẇi(s) =
1

4
wi − w2

i ∆i∆(w3)

with the usual conventions that w0 = wN = 0 and ∆0w = ∆Nw = 0. Notice that s = 0 when t = 0,
and wi(0) = yi(0), so w has the same initial data as y. (This is why we scaled by (1 + t)1/4 rather

than t1/4.) The choice s = log(1 + t) might seem mysterious; it has the special feature of making
the evolution in similarity variables autonomous.

A similarity solution is a stationary solution of (3.2), i.e. vector φ = (φ1, . . . , φN−1) such that

(3.3)
1

4
φi = φ2

i ∆i∆(φ3)

for each i, with the conventions that φ0 = φN = 0 and ∆0φ
3 = ∆Nφ3 = 0.
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Figure 4. Simulation of the slope equations, with asymmetric initial data (top)
and symmetric initial data (bottom). The left side shows the slope yi as a function

of height i/N at various times. The right side shows the scaled slope t1/4yi as a
function of height, demonstrating asymptotic self-similarity.

The introduction of similarity variables in the continuum setting is similar. One verifies that if
u(h, t) solves (2.9) then the function w(h, s) defined by

(3.4) w(h, s) = (1 + t)1/4u(h, t), s = log(1 + t)

solves

(3.5) ws =
1

4
w − w2(w3)hhhh

with boundary conditions w(0, t) = w(1, t) = 0 and (w3)hh(0, t) = (w3)hh(1, t) = 0. A continuum
similarity solution φ(h) solves the associated stationary equation

(3.6)
1

4
φ = φ2(φ3)hhhh
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with φ(0) = φ(1) = 0 and (φ3)hh(0) = (φ3)hh(1) = 0.

3.2. Existence, uniqueness, and properties of the discrete self-similar solution. The
evolution in similarity variables (3.2) is the l2 steepest-descent associated with

(3.7) SEN (w) =
N−1
∑

i=1

−
1

8
w2

i +
1

6
(∆iw

3)2

(defined using the convention that w0 = wN = 0). The proof is almost the same as that of
Proposition 2.1. As a consequence, a similarity solution is simply a critical point of SEN , and we
can prove both existence and uniqueness by arguing variationally.

Theorem 3.1. Consider the “similarity energy” SEN : R
N−1 → R.

(a) The minimum subject to wi ≥ 0 is achieved.
(b) The minimizer φ is unique and strictly positive (i.e. φi > 0 for i = 1, . . . , N−1). Moreover,

it has the property that the piecewise linear graph of φ3 is concave (equivalently, ∆iφ
3 ≤ 0

for i = 1, . . . , N − 1).
(c) This φ is the unique positive critical point of SEN .

Proof. It is convenient to work with vi = w3
i , in terms of which SEN (w) equals

(3.8) SN (v) =

N−1
∑

i=1

−
1

8
v
2/3
i +

1

6
(∆iv)2.

The advantage of this representation is that SN is a strictly convex function of v (since t2/3 is
strictly concave for t ≥ 0).

To prove that a minimizer exists, we need only show that SN → ∞ as ‖v‖ → ∞. Since
the discrete Dirichlet Laplacian is invertible we have 1

6

∑

(∆iv)2 ≥ C1‖v‖
2 with C1 > 0. Since

1
8

∑

v
2/3
i ≤ C2‖v‖

2/3 we have

SN (v) ≥ C1‖v‖
2 − C2‖v‖

2/3.

When ‖v‖ is large the first term on the right is dominant. Therefore a minimizing sequence must
stay bounded, and SN (v) achieves its minimum subject to vi ≥ 0. It follows of course that SEN (w)
achieves its minimimum subject to wi ≥ 0.

Turning to part (b): the uniqueness of the optimal v is clear from the strict convexity of SN ;
we henceforth denote it by v∗. Evidently φi = (v∗i )1/3 is the unique minimizer of SEN (w) subject
to wi ≥ 0. Note that v∗ 6= 0, since the minimum value of SN is clearly negative (indeed, SN is
negative when v is sufficiently small and nonzero). The positivity of v∗ follows immediately from
the concavity of its piecewise linear graph, so we turn now to that assertion. By the “piecewise
linear graph” associated with a vector v = (v1, . . . , vN−1) we mean the graph of the piecewise linear
function taking the value vi at each h = i/N , and value 0 at the endpoints h = 0 and h = 1. We
argue by contradiction: suppose the piecewise linear graph of v∗ is not concave, and consider its
concave hull. It is the piecewise linear graph of a nonnegative vector ṽ. One easily verifies that
∆iṽ ≤ ∆iv

∗ for each i (see Figure 5 and its caption for a brief explanation). But ṽi ≥ v∗i , with
strict inequality for at least one i if the graph of v∗ is not concave. Therefore the value of SN at ṽ
is strictly smaller than the value at v∗, contradicting the fact that v∗ achieves the minimum. Thus
the graph of v∗ is concave.
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j/N

v

j/N

v

hh

Figure 5. Solid line: the piecewise linear graph of v. Dotted line: the piecewise
linear graph of ṽ where it differs from that of v. At an interior endpoint of the
dotted line (e.g. at h = j/N in either figure), the graph of ṽ has a smaller angle
than that of v, so |∆j ṽ| < |∆jv|.

Turning now to part (c): we defined v∗ by minimizing SN subject to the constraint vi ≥ 0. But
we have just shown that each v∗i is positive, so the constraint does not bind. Therefore v∗ is a

critical point of SN , and φ (defined by φi = (v∗i )
1/3) is a critical point of SEN . If SEN had another

positive critical point φ, then vi =
(

φi

)3
would be a positive critical point of SN . Strict convexity

assures us that v = v∗, whence φ = φ. Thus φ is the unique positive critical point of SEN . �

In part (c) of Theorem 3.1, the hypothesis of positivity is crucial. Since SEN (w) = SEN (−w),
−φ also minimizes SEN . Moreover, we can get additional critical points by “odd reflection.” For
example, suppose N = 2M and let φM be the unique positive minimizer of SEM . Then

wi =







φi for i = 1, . . . ,M − 1
0 for i = M

−φ2M−i for i = M + 1, . . . , 2M − 1

is easily seen to be a critical point with N steps. (Since wM = ∆Mw = 0, the fact that φM is
a critical point for SEM implies that the first variation of SEN with respect to wi vanishes for
i 6= M . The first variation with respect to wM also vanishes, since it equals −1

4wM + w2
M∆M∆w3

and wM = 0.)

3.3. Existence, uniqueness, and properties of the continuum self-similar solution. The
PDE evolution in similarity variables (3.5) is the L2 steepest-descent associated with

(3.9) SE(w) =

∫ 1

0
−

1

8
w2 +

1

6
[(w3)hh]2 dh

subject to w(0) = w(1) = 0, by a calculation parallel to (2.13). As a consequence, a continuum
similarity solution is simply a critical point of this functional. (We shall sometimes write (w3)2hh

rather than [(w3)hh]2 for efficiency of notation.)
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The methods we used in the discrete setting carry over straightforwardly to the continuum.
However, the self-similar solution is not very smooth near the endpoints h = 0, 1. Moreover the
character of the singularity will be important in what follows. Therefore we must do some extra
work to characterize the behavior near the endpoints.

Theorem 3.2. Consider the “similarity energy” SE defined by (3.9), viewed as a functional on

(3.10)

{

w :

∫ 1

0
(w3)2hh dh < ∞ and w(0) = w(1) = 0

}

.

(a) The minimum subject to w ≥ 0 is achieved.
(b) The minimizer φ is unique, symmetric, and strictly positive (i.e. φ(h) > 0 for 0 < h < 1).

Moreover, it has the property that the graph of φ3 is concave.
(c) The function v∗(h) = φ3(h) satisfies v∗hhhh = 1

4(v∗)−1/3 with v∗(0) = v∗(1) = 0 and v∗hh(0) =
v∗hh(1) = 0. It is smooth away from the endpoints h = 0, 1, and it approaches 0 linearly at
the endpoints (i.e. v∗h(0) = −v∗h(1) exists and is strictly positive).

(d) At the endpoints v∗hhhh → ∞, but
∫ 1
0 |v∗hhhh|

p dy < ∞ for every p < 3. As a consequence, v∗

is C3 and its third derivative is uniformly α-Hölder continuous for any α < 2/3.

(e) v∗ is the only positive solution of vhhhh = 1
4v−1/3 with v(0) = v(1) = 0, vhh(0) = vhh(1) = 0,

and the regularity stated in (d).

Proof. As in the discrete setting, it is convenient to work with v = w3, in terms of which SE equals

(3.11) S(v) =

∫ 1

0
−

1

8
v2/3 +

1

6
v2
hh dh,

which is strictly convex for v ≥ 0.
To prove that a minimizer exists, we use the direct method of the calculus of variations. Convexity

implies lower semicontinuity, and ‖vhh‖L2 is equivalent to the H2([0, 1]) norm when v(0) = v(1) = 0,
so it suffices to show that S(v) → ∞ as ‖vhh‖L2 → ∞. By Hölder’s and Poincaré’s inequali-

ties
∫ 1
0 v2/3 dh ≤ (

∫ 1
0 v2 dh)1/3 ≤ C1(

∫ 1
0 v2

h dh)1/3. Since
∫ 1
0 vh dh = 0 we also have

∫ 1
0 v2

h dh ≤

C2

∫ 1
0 v2

hh dh. So

S(v) ≥
1

6
‖vhh‖

2
L2 − C‖vhh‖

2/3
L2 .

When ‖vhh‖L2 is large the first term on the right is dominant. Therefore a minimizing sequence
must stay bounded in H2, and S(v) achieves its minimum subject to v ≥ 0. Since SE(w) = S(w3),
it follows that SE(w) achieves its minimum subject to w ≥ 0.

As in the discrete setting, the uniqueness of the optimal v is clear from the strict convexity of
S; we henceforth denote it by v∗. Uniqueness implies symmetry: v∗(h) = v∗(1− h) since otherwise
v∗(1− h) would be a distinct minimizer of S. Note that v∗ is not identically 0, since the minimum

value of S is clearly negative. Clearly φ = (v∗)1/3 is the minimizer of SE(w) subject to w ≥ 0.
The positivity of v∗ follows immediately from the concavity of its graph, so we turn now to

that assertion. Consider the concave hull of the graph of v∗: it is the graph of a positive function
ṽ ≥ v∗. If ṽ = v∗ we are done. Otherwise the graph of ṽ includes a straight segment lying strictly
above the graph of v∗, with endpoints on the graph of v∗. We label the endpoints (h1, v

∗(h1)) and
(h2, v

∗(h2)), where 0 ≤ h1 < h2 ≤ 1 (see Figure 6). Suppose h1 > 0 and h2 < 1. Then the segment
has slope v∗h(h1) = v∗h(h2) (indeed, if the segment is the graph of ah+ b then ah+ b−v∗(h) achieves
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Figure 6. If the graph of v∗ is not concave then its convex envelope includes a
straight segment.

its minimum at h1 and h2; note that v∗ is differentiable since v∗hh ∈ L2). Now consider the function
v(h) defined by

graph of v =

{

graph of v∗ for h ≤ h1 and h ≤ h2

the segment for h1 ≤ h ≤ h2.

Evidently
∫ 1
0 v2/3 dh >

∫ 1
0 (v∗)2/3 dh and

∫ 1
0 v2

hh dh <
∫ 1
0 (v∗)2hh dh. So the value of S at v is strictly

below that at v∗, contradicting the hypothesis that v∗ achieved the minimum. If h1 = 0 or h2 = 0
the argument is almost the same: when hi is an endpoint, we no longer know that that the slope of
the segment matches v∗h(hi), but we no longer need this either. (The matching condition was used
only to know that vhh ∈ L2.)

We turn now to parts (c) and (d), whose proofs will be intertwined. The PDE v∗hhhh = 1
4 (v∗)−1/3

is the Euler-Lagrange equation of S. (To avoid boundary terms when integrating by parts, it suffices
to take the first variation with respect to compactly supported test functions.) Since v∗ is strictly
positive away from the endpoints, the right hand side is a smooth function of v∗; it follows easily
that v∗ is smooth away from the endpoints. In considering what happens near the endpoints, we
need only consider h = 0, by symmetry. Since the graph of v∗ is concave, we have an estimate of
the form

(3.12) v∗(h) ≥ Ch for h near 0

with C > 0. (Indeed, between h = 0 and h = 1/2 the graph lies above the line joining the origin
to (1/2, v∗(1/2)), so we may take C = 2v∗(1/2)). Therefore |v∗hhhh| ≤ C ′h−1/3 near h = 0, and
|v∗hhhh|

p is integrable for p < 3. Using the inequality

|f(h2) − f(h1)| ≤

(∫ h2

h1

|fh|
p dh

)1/p

|h2 − h1|
(p−1)/p

we conclude that v∗hhh is uniformly α-Hölder continuous for any α < 2/3. In particular, v∗h(0)
exists – and it must be positive, by (3.12). The remaining assertion of parts (c) and (d) is that
v∗hh(0) = v∗hh(1) = 0. This comes, of course, by taking the first variation of S(v) and paying
attention to the boundary terms. If v̇ is a smooth function of h that vanishes at h = 0 and h = 1,
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the vanishing of the first variation requires that

0 =

∫ 1

0
−

1

12
(v∗)−1/3v̇ +

1

3
v∗hhv̇hh dh

=

∫ 1

0

∫

1

3

[

−1
4(v∗)−1/3 + v∗hhhh

]

v̇ dh +
1

3
v∗hhv̇h

∣

∣

1

0
−

1

3
v∗hhhv̇

∣

∣

1

0
(3.13)

=
1

3
v∗hhv̇h

∣

∣

1

0

using the PDE and the boundary condition on v̇ for the last line. Since v̇h(0) and v̇h(1) are
unrestricted, we conclude that v∗hh(0) = v∗hh(1) = 0.

Part (e) is standard: we have just proved that the PDE (with the stated boundary conditions and
regularity hypothesis) amounts to the vanishing of the first variation of S. This implies uniqueness,
since S is strictly convex. �

We note that while v∗ = φ3 is C3, the function φ is much more singular: indeed, its first derivative
φh = 1

3(v∗)−2/3v∗h blows up like a constant times h−2/3 as h → 0.
We discussed in Section 2.4 the conjecture that in the continuum setting, the region occupied by

steps should “have finite extent.” In the continuum setting, our u(h, t) is the slope as a function of
height and time. It determines the height as a function of space and time, h(x, t), by integration.
The distance between the leading step and the trailing step is evidently

(3.14) x|h=1 − x|h=0 =

∫ 1

0
xh dh =

∫ 1

0

1

u
dh.

So the steps have finite extent exactly if 1/u is integrable. Since h−2/3 is integrable, the similarity
solution has this property:

Proposition 3.3. The continuum similarity solution u(h, t) = (1 + t)−1/4φ(h) has the property
that the steps have finite extent. In fact, they occupy an interval whose length is proportional to
(1 + t)1/4.

4. The Discrete Solution is Asymptotically Self-similar

This section proves that in the discrete setting (i.e. with N held fixed) the slope evolution is
asymptotically self-similar. The logic of the argument is simple: the rescaled slope w evolves by
l2-steepest descent of SEN , and this function has a unique positive critical point. So we expect w
to converge to the critical point as time tends to infinity.

There is however a catch: the uniqueness result requires strict positivity. So we need to know
that each wi stays bounded away from 0. Fortunately, this is true:

Lemma 4.1. Let w = (w1(s), . . . , wN−1(s)) solve the discrete evolution in similarity variables,
(3.2), with positive initial data. Define

z(s) = ‖∆−1(1/w)‖2

where 1/w is the vector (w−1
1 , . . . , w−1

N−1), ∆−1 is the matrix that inverts the discrete Dirichlet

Laplacian (2.16), and we use the l2 norm on R
N−1. Then z satisfies

(4.1)
dz

ds
≤ −

1

4
z + Cz1/2
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where C depends only on the initial data. As a consequence, z stays uniformly bounded and each
wi stays bounded away from 0.

Proof. Differentiating with respect to s gives

1

2

dz

ds
= 〈∆−1(1/w),∆−1(1/w)s〉.

Now, the evolution law for w can be written as

(1/w)s = −
1

4
(1/w) + ∆(∆w3).

So we have

1

2

dz

ds
= 〈∆−1(1/w),−

1

4
∆−1(1/w) + ∆−1∆∆w3〉

= −
1

4
z + 〈∆−1(1/w),∆w3〉

≤ −
1

4
z + z1/2‖∆w3‖

To prove (4.1), we need to show that ‖∆w3‖ stays uniformly bounded. From the definition (3.7)
of SEN , we have

‖∆w3‖2 = 6SEN (w) +
3

4
‖w‖2

Now, the evolution is steepest descent for SEN , so this functional is monotonically decreasing.
Moreover the L2 norm also decreases, by an argument similar to the proof of Lemma 2.2:

1

2

d

ds
‖w‖2 = 〈w,ws〉

= 〈w,−
1

4
w − ∂l2EN (w)〉

= −
1

4
‖w‖2 − 6EN (w) ≤ 0.

(Here EN is the functional defined by (2.11), and we used (2.15) in the last step.) Thus ‖∆w3‖2 is
bounded by the initial value of 6SEN (w) + 3

4‖w‖2, and (4.1) is proved.
The remaining assertions of the Lemma are elementary: since the right side of (4.1) is negative

for z > (4C)2, z is bounded for all s > 0 by max{z(0), (4C)2}. Since we are in the discrete setting,

multiplication by ∆ is a bounded operator, and ‖1/w‖ = ‖∆∆−1(1/w)‖ ≤ C ′z1/2. Thus 1/wi is
bounded for each i = 1, . . . , N − 1, uniformly in s. So wi remains bounded away from 0. �

With this result in hand, the proof of asymptotic self-similarity is easy. Note that the following
result is global in character: every solution is asymptotically self-similar, regardless of its initial
data (provided the initial slopes are positive, i.e. the intial step profile is monotone).

Theorem 4.2. Let w = (w1(s), . . . , wN−1(s)) solve the discrete evolution in similarity variables,
(3.2), with positive initial data. Then w is asymptotically self-similar, in the sense that w(s) → φ
as s → ∞, where φ is the similarity solution (the unique positive solution of (3.3)).
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Proof. The evolution of w is steepest-descent for SEN (w). Since SEN is bounded below and control
of SEN implies a bound on ‖w‖, w(s) stays uniformly bounded as s → ∞. We conclude, by a
standard result from ODE theory, that the ω-limit set of w(s) consists of critical points of SEN .
Moreover by Lemma 4.1 w stays uniformly positive, so only positive critical points can occur. By
Theorem 3.1 there is only one such critical point, our self-similar solution φ. Since the ω-limit set
contains only φ, w(s) converges to φ as s → ∞. �

5. Convergence of the self-similar solutions as N → ∞

The continuum self-similar solution φ(h) minimizes the continuum self-similar energy (3.9), while
the discrete self-similar solution (let us call it φN , to emphasize the dependence on N) minimizes the
finite-difference analogue of that functional, (3.7). Therefore it is natural to expect that φN → φ as
N → ∞. This is indeed the case, as we prove in the present section. (The result would be routine
if φ were smooth. But φ is singular at the endpoints; our essential task is therefore to assess the
impact of its singular behavior).

As usual in discussing the convergence of a numerical approximation scheme, we must either (a)
estimate the difference between the discrete solution φN = (φN

1 , . . . , φN
N−1) and the nodal values of

φ(h), or (b) estimate the difference, in a suitable function space, between φ and an interpolant of
φN . We choose the latter approach.

Since our problem involves second derivatives, the convenient interpolation operator associates
a discrete function with a piecewise quadratic one. To define it, let ∆h = 1/N , let hi = i/N
be our usual equispaced gridpoints, and let hi+ 1

2

=
(

i + 1
2

)

∆h be the midpoints of the intervals

they determine. Then for any discrete function η with nodal value ηi at hi and η0 = ηN = 0, its
interpolant η̃N (h) is

(i) linear on
[

0, h 1

2

]

and
[

hN− 1

2

, 1
]

, matching the discrete function at the endpoints of these

intervals; and

(ii) quadratic on each interval
[

hj− 1

2

, hj+ 1

2

]

, j = 1, . . . , N − 1, with values and derivatives at

the endpoints that match those of the discrete function in the sense that

(5.1)
η̃N

(

hj− 1

2

)

=
ηj + ηj−1

2
, η̃N

(

hj+ 1

2

)

=
ηj + ηj+1

2

η̃N
h

(

hj− 1

2

)

=
ηj − ηj−1

∆h
, η̃N

h

(

hj+ 1

2

)

=
ηj+1 − ηj

∆h
.

Condition (ii) might seem at first overdetermined, since a quadratic polynomial has just three
parameters. It is not, since the specified data meet the consistency condition

η̃N
(

hj− 1

2

)

− η̃N
(

hj+ 1

2

)

=
∆h

2

[

η̃N
h

(

hj− 1

2

)

+ η̃N
h

(

hj+ 1

2

)]

.

The interpolant η̃N (h) is uniquely determined by (5.1); it vanishes at the endpoints h = 0, 1 and
belongs to H2(0, 1); moreover

(5.2)

∫ 1

0

(

η̃N
)2

hh
dh =

1

N

N−1
∑

i=1

(∆iη)2

since
(

η̃N
)

hh
= ∆iη on

(

hi− 1

2

, hi+ 1

2

)

.



THE EVOLUTION OF A CRYSTAL SURFACE 21

Since SE(w) is convex as a function of v = w3, the natural convergence estimate involves φ3

rather than φ:

Theorem 5.1. Let vN
i = (φN

i )3 be the cube of the discrete self-similar solution, and let ṽN be the
piecewise-quadratic interpolant defined by (5.1). Then ṽN converges to the cube of the continuum

self-similar solution in H2(0, 1) with convergence rate N−5/6 in the sense that
∫ 1
0

(

ṽN − φ3
)2

hh
dh ≤

CN−5/3.

Proof. Since we are discussing the discrete and continuous settings at the same time, it is important
to normalize SEN by 1/N , so it behaves like an integral as N → ∞. We therefore define

(5.3) SEN (w) =
1

N
SEN (w) =

1

N

N−1
∑

i=1

−
1

8
w2

i +
1

6
(∆iw

3)2

(defined as always using the convention that w0 = wN = 0).
Our argument has three main steps. Taken together, Steps 1 and 2 demonstrate that SE

and SEN have approximately the same minimum value. Then Step 3 uses a convexity argument
complete the proof.

Step 1: min SEN ≤ min SE + CN−5/3. Indeed, let φ be the continuous self-similar solution, and
consider the trial function wi = φ(i/N) in the definition of SEN . We claim that

(5.4)

∣

∣

∣

∣

∣

∫ 1

0
φ2 dh −

1

N

N−1
∑

i=1

φ2(hi)

∣

∣

∣

∣

∣

≤ CN−5/3

and

(5.5)

∣

∣

∣

∣

∣

∫ 1

0
(φ3)2hh dh −

1

N

N−1
∑

i=1

(∆iφ
3)2

∣

∣

∣

∣

∣

≤ CN−2.

The assertion of Step 1 follows immediately from these relations.
We shall make repeated use of the estimate

(5.6)

∣

∣

∣

∣

∫ hi+1

hi

f dh −
f(hi) + f(hi+1)

2
∆h

∣

∣

∣

∣

≤ C (∆h)2
∫ hi+1

hi

|fhh| dh,

which follows easily from the fact that if g(0) = g(1) = 0 then |
∫ 1
0 g dh| ≤ C

∫ 1
0 |ghh| dh.

Preparing to address (5.4), we recall from Theorem 3.2 that v = φ3 is smooth, symmetric, and
uniformly positive away from the endpoints h = 0, 1; moreover v is (uniformly) C3,α, and vh(0) is
strictly positive. Since

(φ2)hh = (v2/3)hh = −
2

9
v−4/3v2

h +
2

3
v−1/3vhh,

we have

|(φ2)hh| ≤ C max{h−4/3, (1 − h)−4/3}
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for 0 < h < 1. Applying (5.6) on (hi, hi+1) for i = 1, . . . , N − 2, adding, and using that
∑N−1

i=1 max{h
−4/3
i , (1 − hi)

−4/3} ≤ CN4/3, we conclude that
∣

∣

∣

∣

∣

∫ hN−1

h1

φ2 dh −
1

N

N−2
∑

i=1

φ2(hi) + φ2(hi+1)

2

∣

∣

∣

∣

∣

≤ CN−5/3.

The left hand side equals
∣

∣

∣

∣

∫ hN−1

h1

φ2 dh −
1

N

(

φ2(h1)

2
+ φ2(h2) + . . . + φ2(hN−2) +

φ2(hN−1)

2

)∣

∣

∣

∣

,

which differs from the left hand side of (5.4) by
∫ h1

0
φ2 dh +

∫ 1

hN−1

φ2 dh +
1

2N
φ2(h1) +

1

2N
φ2(hN−1).

Since φ2(h) = v2/3(h) ≤ Ch2/3 near h = 0, the first and third terms are at most CN−5/3. By
symmetry, the same estimate applies to the other two terms. Thus (5.4) holds.

Turning now to (5.5), we continue to work with v = φ3. We have
∣

∣(vhh)2hh

∣

∣ =
∣

∣2v2
hhh + 2vhhvhhhh

∣

∣ ≤ C max{h−1/3, (1 − h)−1/3},

using the PDE vhhhh = 1
4v−1/3 along with the linear behavior of v near h = 0, 1. Applying (5.6) on

(hi, hi+1) for i = 0, . . . , N − 1, adding, and noting that h−1/3 is integrable at 0, we conclude that

(5.7)

∣

∣

∣

∣

∣

∫ 1

0
v2
hh dh −

1

N

N−1
∑

i=1

v2
hh(hi)

∣

∣

∣

∣

∣

≤ CN−2

∫ 1

0

∣

∣(vhh)2hh

∣

∣ dh ≤ CN−2.

Now consider the difference between ∆iv = N2[v(hi−1 − 2v(hi) + v(hi+1)] and vhh(hi): by Taylor
expansion,

|vhh(hi) − ∆iv| ≤ CN−2 max
hi−1≤h≤hi+1

|vhhhh| ≤ CN−2 max{h
−1/3
i−1 , (1 − hi+1)

−1/3}

for i = 2, . . . , N − 2. Since vhh is uniformly bounded, so is ∆iv (uniformly for i = 2, . . . , N − 2),
whence

∣

∣v2
hh(hi) − (∆iv)2

∣

∣ ≤ C |vhh(hi) − ∆iv| ≤ CN−2 max{h
−1/3
i−1 , (1 − hi+1)

−1/3}.

Adding, we conclude that
∣

∣

∣

∣

∣

1

N

N−2
∑

i=2

v2
hh(hi) −

1

N

N−2
∑

i=2

(∆iv)2

∣

∣

∣

∣

∣

≤ CN−3
N−2
∑

i=2

max{h
−1/3
i−1 , (1 − hi+1)

−1/3}.

The right hand side is of order N−2. The left hand side lacks terms associated with i = 1 and
i = N − 1, however

|vhh(h1)| ≤ CN−1

since vhh is uniformly C1 and vhh(0) = 0; also

|∆1v| ≤ CN−1
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since v(h) = vh(0)h+ O(h3) near zero, using Taylor expansion, v(0) = vhh(0) = 0, and the uniform
boundedness of vhhh. The situation near h = 1 is symmetric. Thus the terms associated with the
extreme values of i are negligible, and we have shown that

(5.8)

∣

∣

∣

∣

∣

1

N

N−1
∑

i=i

v2
hh(hi) −

1

N

N−1
∑

i=1

(∆iv)2

∣

∣

∣

∣

∣

≤ CN−2.

The estimate (5.5) follows immediately from (5.7) and (5.8). This completes Step 1.

Step 2: min SE ≤ minSEN + CN−5/3. Indeed, let vi = φ3
i where φ is the discrete self-similar

solution, and consider its piecewise quadratic interpolant ṽN . We have

∫ 1

0

(

ṽN
)2

hh
dh =

1

N

N−1
∑

i=1

(∆iv)2

by (5.2), and one easily verifies that
∣

∣

∣

∣

∣

∫ 1

0

(

ṽN
)2/3

dh −
1

N

N−1
∑

i=1

(

ṽN
)2/3

(hi)

∣

∣

∣

∣

∣

≤ CN−5/3

by arguing as for (5.4). Taken together, these give the assertion of Step 2.

Step 3:
∫ 1
0

(

ṽN − φ3
)2

hh
dh ≤ CN−5/3. Remember that SE(w) = S(w3), where

(5.9) S(η) =

∫ 1

0
−

1

8
η2/3 +

1

6
η2

hh dh

is strictly convex. Taken together, Steps 1 and 2 show that

(5.10) S(ṽN ) − S(v) ≤ CN−5/3

where v = φ3 and ṽN is the piecewise-quadratic interpolant of φ3
i . By second-order Taylor expansion

of the quadratic function 1
2 |ξ|

2 (which is exact since the function is quadratic) we have

(5.11)
1

2
|ṽN

hh|
2 −

1

2
|vhh|

2 = vhh

(

ṽN
hh − vhh

)

+
1

2
|ṽN

hh − vhh|
2.

By the convexity of −v2/3 we have

(5.12) −
1

8

(

ṽN
)2/3

+
1

8
v2/3 ≥ −

1

12
v−1/3

(

ṽN − v
)

.

Multiplying (5.11) by 1
3 , integrating (5.11) and (5.12) over [0, 1], then adding the resulting expres-

sions, we get

S(ṽN ) − S(v) ≥

∫ 1

0

1

3
vhh

(

ṽN
hh − vhh

)

−
1

12
v−1/3

(

ṽN − v
)

+
1

6
|ṽN

hh − vhh|
2 dh.

Integrating the first term on the right hand side by parts and using that v = vhh = 0 at the
boundary, we get

S(ṽN ) − S(v) ≥

∫ 1

0

(

1

3
vhhhh −

1

12
v−1/3

)

(ṽN − v) +
1

6
|ṽN

hh − vhh|
2 dh.
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But vhhhh − 1
4v−1/3 = 0, so the first term vanishes and we have

S(ṽN ) − S(v) ≥

∫ 1

0

1

6
|ṽN

hh − vhh|
2 dh.

Combining this with (5.10), we conclude that

∫ 1

0
|ṽN

hh − vhh|
2 dh ≤ CN−5/3,

confirming the assertion of Step 3 and completing the proof of the theorem. �

6. Discussion

We have discussed the evolution of a monotone step train separating two facets in the attachment-
detachment-limited regime. By focusing on the slope as a function of height we have achieved
a rather complete understanding of the discrete problem; in particular we have shown that the
solution exists for all time and is asymptotically self-similar.

Our understanding of the continuous problem is much less complete: we have not proved as-
ymptotic self-similarity, nor have we even discussed the existence or uniqueness of solutions to
(2.9). However we have identified a similarity solution in the continuous setting, by minimizing
SE. Moreover we have explored its properties in detail. In addition, we have shown uniqueness
assuming positivity and some regularity, and we have shown that it is the continuum limit of our
discrete self-similar solutions.

Can similar methods be used to address the continuous time-dependent problem? We hope so,
but this will apparently require additional ideas. In both Sections 2 and 4, the positivity of the
discrete solution (ui in Section 2, wi in Section 4) was used in a crucial way. We do not know even
a “formal proof” of positivity in the time-dependent continuous setting. (The proof of Lemma 4.1
has a continuous analogue, if w is regular enough to support the necessary integrations by parts.
However this gives only that ∆−1(1/w) ∈ L2, where ∆−1(1/w) = f is the solution of fhh = 1/w
with f(0) = f(1) = 0. Such an estimate permits w to vanish at isolated points. The same remark
applies also to the solution of the slope PDE (2.9): if it is regular enough to support the necessary
integrations by parts, then we can argue as for Lemma 2.4 to get ∆−1(1/u) ∈ L2. However this
would not prevent u from vanishing at isolated points.)

What about local stability of the continuous self-similar solution, for the evolution in similarity
variables? We certainly expect it to be true. Linearized stability – more specifically, strict positivity
of the Hessian of SE, viewed as a function of v = w3 – is elementary. (It was this strict convexity
that drove the proof of Theorem 5.1.)

Self-similar behavior is also seen numerically for the analogous problem with diffusion-limited
step dynamics [6]. Can our approach be used in that setting? Unfortunately, we don’t see how.
Our analysis relies heavily on the steepest-descent structure of the slope evolution law. In the
diffusion-limited setting the discrete slope evolution law is ẏi = −y2

i ∆i[y∆y3] and the analogue
of (2.9) is ut = −u2[u(u3)hh]hh. These evolutions seem not to have a steepest-descent character
analogous to that of the attachment-detachment-limited version.

We have concentrated on the slope as a function of height. The key advantage of this viewpoint
is that there is no free boundary: h always ranges from 0 to 1. This viewpoint is however limited
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to the study of monotone step trains in one space dimension. For a profile with peaks and valleys
we expect steps to collide, so the maximum and minimum height would change with time.

Appendix A. Physical Basis of the Step ODEs

This Appendix reviews the derivation of the step equations (2.1) and the meaning of the
attachment-detachment-limited regime. This material is well-known; similar discussions can be
found, for example, in [6, 10, 11, 17].

Consider a monotone one-dimensional step train as shown in Figure 1, and let ci(x, t) be the
concentration of adatoms on the terrace between xi and xi+1. Ignoring evaporation and deposition,
ci solves the diffusion equation

∂ci

∂t
= Ds∆ci

where Ds is the terrace diffusion constant. Working in the quasistatic approximation, we replace
this by

(A.1) ∆ci = 0 for xi < x < xi+1

with ∆ci = (ci)xx since the model is one-dimensional.
The boundary conditions for (A.1) links the adatom flux Ji = −Ds(ci)x to the equilibrium

adatom densities at the steps, through “sticking coefficients” ku and kd (which may be different,
due to the Ehrlich-Schwoebel effect):

(A.2)
−Ji(xi, t) = kd(ci(xi, t) − ceq

i )

Ji(xi+1, t) = ku(ci(xi+1, t) − ceq
i+1),

where ceq
i is the equilibrium adatom concentration on the ith step (to be specified presently).

Thinking three-dimensionally (i.e. viewing each step as a line and each terrace as a strip), ci

represents atoms per unit area while Ji represents atoms per unit length per unit time, so ku and
kd have dimensions length/time.

The advantage of the quasistatic approximation is that we can easily solve (A.1)-(A.2) exactly.
Indeed: (ci)xx = 0 implies ci(x, t) = ai(t)x + bi(t), and the boundary conditions lead easily to

(A.3) ai =
ceq
i+1 − ceq

i

(xi+1 − xi) + Ds

(

1
ku

+ 1
kd

) .

Now the step velocity is determined by conservation of mass: the ith step advances at a rate
proportional to the net flux of atoms into it (or recedes, if the flux is negative):

(A.4)

dxi

dt
= Ω(Ji − Ji−1)

= ΩDs(ai − ai−1)

= ΩDs





ceq
i+1 − ceq

i

(xi+1 − xi) + Ds

(

1
ku

+ 1
kd

) −
ceq
i − ceq

i−1

(xi − xi−1) + Ds

(

1
ku

+ 1
kd

)





where Ω (the area occupied by a single atom) has dimension (length)2.



26 HALA AL HAJJ SHEHADEH, ROBERT V. KOHN, AND JONATHAN WEARE

To complete the model we must specify the equilibrium concentration ceq
i at the ith step, which

enters the boundary condition (A.2). Linearizing the relation

ceq
i = ceq exp

µi

kBT

where ceq is the equilibrium concentration at an isolated step, kB is the Boltzmann constant, T is
temperature, and µi is the chemical potential of the ith step, we take

(A.5) ceq
i = ceq

(

1 +
µi

kBT

)

.

It remains to discuss the chemical potential µi, which is (by definition) the amount by which the
free energy changes when the step moves one atomic distance. Since (for a monotone step train)
steps are neither created nor annihilated, we can ignore the self-energy of the steps. The free energy
E is therefore entirely due to step interaction:

(A.6) E =
∑

i

f

(

xi+1 − xi

α

)

where α is the height of each step (the atomic distance) and the functional form of f reflects the
physics of step interaction. We follow convention in focusing on entropic interaction, which leads
to the choice

(A.7) f(t) = c0t
−2

where c0 has the dimensions of energy. Combining the definition

µi = −α
∂E

∂xi

with our choice of E gives

(A.8) µi = c0f
′

(

xi+1 − xi

α

)

− c0f
′

(

xi − xi−1

α

)

= −
2c0α

3

(xi+1 − xi)3
+

2c0α
3

(xi − xi−1)3
.

The model is now fully specified. Taking ku = kd = k for simplicity, the velocity of the ith step
is

(A.9)
dxi

dt
=

ΩDsc
eq

kBT

[

µi+1 − µi

(xi+1 − xi) + 2Ds/k
−

µi − µi−1

(xi − xi−1) + 2Ds/k

]

with µi given by (A.8).
The attachment-detachment-limited (ADL) version of the step dynamics is obtained by making

a further approximation. The denominator of each term in (A.9) depends on the relative sizes of
the terrace width li = xi+1−xi and the attachment length Ds/k. When Ds/k ≫ li, diffusion across
the terraces is fast and the dynamics is limited by the attachment and detachment processes (this
is the ADL regime). In the opposite case, when Ds/k ≪ li, the dynamics is limited by diffusion
across the terraces (this is the diffusion-limited or DL regime). The expression for the step velocity
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simplifies in these cases, becoming

dxi

dt
=

Ωkceq

2kBT
(µi+1 − 2µi + µi−1) in the ADL regime, and(A.10)

dxi

dt
=

ΩDsc
eq

kBT

(

µi+1 − µi

xi+1 − xi
−

µi − µi−1

xi − xi−1

)

in the DL regime.(A.11)

In this paper we have focused on the ADL regime. Our starting point (2.1) was therefore a
non-dimensionalized version of (A.10). The equations for the extreme steps are obtained similarly,
with the convention that the adatom concentration vanishes identically on the facets (to the right
of xN and to the left of x1), so that the extreme steps experience a flux of adatoms only from one
side.

Appendix B. Consistency with the conventional height pde

This Appendix checks the formal consistency of our slope PDE with the more conventional
approach to surface evolution, based on a PDE for the surface height as a function of position
and time. There is evidence in the radial setting that DL step dynamics is inconsistent with a
widely-used PDE for h(x, t) [13]; the discussion here shows that there is no such inconsistency in
our one-dimensional, monotone, ADL setting.

The “more conventional approach” we have in mind describes the evolution of a continuous,
monotone profile h(x, t) such that h = 0 for x < xL(t) and h = 1 for x > xR(t). The PDE is

(B.1) ht + jx = 0

where the “surface current” j is

j =

{

−m(hx)µx for xL < x < xR

0 otherwise

Here µ = −3
2(h2

x)x is the first variation of
∫

1
2h3

x dx and m(hx) is a suitable mobility. In general the

mobility is a constant times (1 + 2Ds

αk |hx|)
−1; in the ADL setting this reduces after nondimension-

alization to

m(hx) =
1

|hx|

and the PDE becomes

(B.2) ht = −
3

2

(

1

hx
(h2

x)xx

)

x

for xL(t) < x < xR(t).

It is not difficult to see that this PDE is the continuum version of our step equations, by repeated
use of the principle that the continuum version of f(xi+1)−f(xi) is fx

α
hx

where α is the step height.

Equation (B.2) is quite singular near xL and xR since we expect hx to approach zero there.
Moreover xL and xR are free boundaries, whose evolution is at best determined implicitly. Therefore
the existence and uniqueness of solutions is open. But we now check that a (sufficiently regular)
solution of (B.2) determines a solution of our slope PDE (2.9).

We start by differentiating (B.2) with respect to x, to get an equation for the slope as a function
of space and time, F (x, t) = hx(x, t): clearly

(B.3) Ft = −
3

2

(

1

F
(F 2)xx

)

xx

.
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Now suppose u(h, t) is defined not by the slope PDE, but rather by the relation F (x, t) = u(h(x, t), t).
Then Ft = ut + uhht = ut −

3
2uh

(

F−1(F 2)xx

)

x
. Using chain rule in the form gx = ghhx = ghu we

have
3

2

(

F−1(F 2)xx

)

x
=

3

2
u

(

u−1u(u(u2)h)h
)

h
= u(u3)hhh.

Taking another x derivative, we get

3

2

(

F−1(F 2)xx

)

xx
= u(u(u3)hhh)h = u2(u3)hhhh + uuh(u3)hhh

Thus (B.3) is equivalent to

ut − uhu(u3)hhh = −u2(u3)hhhh − uuh(u3)hhh

which simplifies to our slope PDE ut = −u2(u3)hhhh.
What about boundary conditions? The continuity equation (B.1) should hold weakly across

x = xL and x = xR. Since h should be continuous there, this requires that j be continuous, in
other words (B.1) includes the implicit requirement that 1

hx
(hx)2xx approach 0 as x ↓ xL and as

x ↑ xR. This is equivalent to our condition for the slope PDE that (u3)hh = 0 at h = 0, 1, since the
relation F (x, t) = u(h(x, t), t) implies

(u3)hh =
1

F

(

1

F
(F 3)x

)

x

=
3

2

1

F
(F 2)xx

and the edges of the facets correspond to h = 0, 1.
A key advantage of working with the slope as a function of height is that the task of finding the

facet edge is decoupled from the PDE. Rather than solve a free boundary problem, we have only
to solve the slope PDE for u(h, t), then integrate to find the inverse of the height function using

the relation x(h, t) − xL(t) =
∫ h
0 u−1 dh. Taking h = 1, we get xR(t) − xL(t) =

∫ 1
0 u−1 dh. If due

to symmetry we expect xR(t) = −xL(t) (this is the case, for example, for our self-similar solution)

then xR(t) = −xL(t) = 1
2

∫ 1
0 u−1 dh. Thus x(h, t) is fully determined, and so is its inverse function

h(x, t). Without symmetry, we need an extra relation to determine the “constant of integration”

xL(t). This relation is
∫ 1
0 x(h) dh = constant (the continuum version of

∑N
i=1 ẋi = 0, which follows

immediately from the step equations (2.1)-(2.4)).
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