MATH235 Calculus 1
 Definitions

1. $\lim _{x \rightarrow c} f(x)=L$

For any $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-c|<\delta$.
2. f is continuous at $x=c$.
$f(c)$ and $\lim _{x \rightarrow c} f(x)$ exist, and $f(c)=\lim _{x \rightarrow c} f(x)$.
3. f is differentiable at $x=c$.
$f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists.
4. average rate of change/instantaneous rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$.

Let $x_{2}=x_{1}+h, h \neq 0$. Then, the average rate of change is $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=$ $\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}$, and the instantaneous rate of change is $\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=$ $\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}$.
5. f is increasing/decreasing on the interval (a, b).
f is increasing on (a, b) if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ for all x_{1} and x_{2} in (a, b).
f is decreasing on (a, b) if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ for all x_{1} and x_{2} in (a, b).
6. f is monotonic.
f is monotonic on the interval I if f is increasing on I or decreasing on I.
7. The graph of $y=f(x)$ is concave up/down on the interval (a, b).
f is concave up on (a, b) if f^{\prime} is increasing on (a, b).
f is concave down on (a, b) if f^{\prime} is decreasing on (a, b).
8. $\int_{a}^{b} f(x) d x$

Divide $[a, b]$ into n-subintervals: $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \cdots\left[x_{n-1}, x_{n}\right]$, where $x_{0}=a$ and $x_{n}=b$. Let Δx_{k} be the width of the k-th subinterval, and let x_{k}^{*} be any point in the k-th subinterval, for all $1 \leq k \leq n$. Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

