1. Show that f(x) = e” is represented by its Maclaurin series for all x € (—o0, ).

Step 1. Find the Maclaurin series generated by f(x) = e* and find its interval of
convergence.

Since f(™(z) = e® for all non-negative integer n, we have that f((0) = ¢ = 1.
Therefore, the Maclaurin series generated by e” is
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The interval of convergence of this power series is (—o0, 00), since
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for all z € (—o0, ).

Step 2. Use the Taylor’s formula to get a formula for e®.
By the Taylor’s Formula, we have that, for each x € (—o0, o),

e’ = P,(x) + Ry(x),
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for some real number c.

Step 3. Notice that by Step 2, we have
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for all x € (—oo,o0) if we show that lim,, 4 SN )
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Step 4. Conclude lim,,_, ﬁx"“ = 0 by showing that lim,,_,. |ﬁx”+l| = 0.
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for all z € (—o0, 00).
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Hence, lim,, z"

= 0 and therefore,
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for all x € (—o0, ), and we are done.
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