
1. Show that f x ex is represented by its Maclaurin series for all x , .

Step 1. Find the Maclaurin series generated by f x ex and find its interval of

convergence.

Since f n x ex for all non-negative integer n, we have that f n
0 e0 1.

Therefore, the Maclaurin series generated by ex is
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The interval of convergence of this power series is , , since
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for all x , .

Step 2. Use the Taylor’s formula to get a formula for ex.
By the Taylor’s Formula, we have that, for each x , ,
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for some real number c.

Step 3. Notice that by Step 2, we have
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for all x , .
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for all x , , and we are done.


