MATH 236 CALCULUS 2 CONVERGENCE OF SEQUENCES

1. Show that if $\{a_n\}$ is a convergent sequence, then for any positive number ϵ there exists a corresponding integer N such that

$$|a_n - a_m| < \epsilon$$

for all n > N and m > N.

step 0 Suppose $\{a_n\}$ converges to L. Write down what this means. In other words, write down the definition of

"A sequence $\{a_n\}$ converges to L."

step 1 Since the definition in step 0 holds for any $\epsilon > 0$, the statement will be true even if you replace ϵ by $\frac{\epsilon}{2}$. Rewrite the above inequality with ϵ replaced by $\frac{\epsilon}{2}$ and convince yourself that there exists some positive integer N such that this inequality holds for all n > N.

step 2 Notice that the inequality in step 1 will hold even if you replace the n by another variable m as long as m > N. Write down this inequality that holds for all m > N.

step 3 Recall the triangle inequality:

 $|x+y| \leq |x|+|y|$ for all $x, y \in \Re$.

Apply the triangle inequality to $a_n - L$ and $L - a_m$ and conclude your argument.

step 4 Write a complete mathematical proof by putting together the above steps.

2. (Uniqueness of Limits) Suppose a sequence $\{a_n\}$ converges to L_1 and L_2 . Show that L_1 and L_2 must be equal.

step 0

We will assume the opposite of what we would like to prove and then reach a contradiction. That is, assume that $L_1 \neq L_2$, and then reach a false result. This will show that our assumption was wrong proving that $L_1 = L_2$. Such kind of proof technique is called "proof by contradiction."

step 1 Write down the definition of $\lim_{n\to\infty} a_n = L_1$ and $\lim_{n\to\infty} a_n = L_2$.

step 2

Assume that $L_1 \neq L_2$. Without loss of generality, assume that $L_1 < L_2$. Then, $L_2 - L_1 > 0$. Choose $\epsilon = \frac{L_2 - L_1}{2}$ in step 1.

step 3 Apply the triangle inequality to $L_2 - a_n$ and $a_n - L_1$ to reach $L_2 - L_1 < L_2 - L_1$ which is a contradiction. This implies that our assumption $L_1 \neq L_2$ is false. Therefore, $L_1 = L_2$, and this completes the proof.

step 4 Write a complete mathematical proof by putting together the above steps.