MATH 236 CALCULUS 2 AREA BETWEEN CURVES AND VOLUME OF REVOLUTION

1. Evaluate the integral and interpret it as the area of a region. Sketch the region.

(1)
$$\int_0^{\pi} |\sin x - \cos x| dx$$

- (2) $\int_0^4 |\sqrt{x+2} x| dx$
- 2. Each integral represents the volume of a 3D object. Describe that object.

(1) $\pi \int_0^{\frac{\pi}{2}} \cos^2 x dx$

(2) $\pi \int_0^1 y^4 - y^8 dy$

3. Determine the volume of the solid obtained by rotating the region bounded by $y = x^2 - 2x$ and y = x about the y = 4 axis.

4. Determine the volume of the solid obtained by rotating the region bounded by $y = 2\sqrt{x-1}$ and y = x-1 about the x = -1 axis.

5. Determine the volume of the solid obtained by rotating the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$ in the first quadrant about the *y*-axis.

6. Determine the volume of the solid obtained by rotating the region bounded by $y = x^2 - 4x + 5$, x = 1, and x = 4 about the x-axis.