MATH 235 Calculus 1
 Quiz 4
 10/04/2010

Show all work to receive full credit. Carefully write down your thought process. Your solution must not contain any logical errors. Good luck!

1. $y=\left(\frac{4 t}{t+1}\right)^{-2}$. Find $\frac{d y}{d t}$.

$$
\begin{aligned}
\frac{d y}{d t} & =-2\left(\frac{4 t}{t+1}\right)^{-3} \frac{d}{d t}\left(\frac{4 t}{t+1}\right) & \text { by the Chain Rule } \\
& =-2\left(\frac{4 t}{t+1}\right)^{-3} \frac{4(t+1)-4 t \cdot 1}{(t+1)^{2}} & \text { by the Quotient Rule } \\
& =-2\left(\frac{t+1}{4 t}\right)^{3} \frac{4}{(t+1)^{2}} & \\
& =\frac{-8(t+1)}{(4 t)^{3}} & \\
& =\frac{-t-1}{8 t^{3}} &
\end{aligned}
$$

2. $y=x^{2} \sin ^{2}\left(2 x^{2}\right)$. Find $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =2 x \sin ^{2}\left(2 x^{2}\right)+x^{2} \frac{d}{d x}\left(\sin \left(2 x^{2}\right)\right)^{2} & & \text { by the Product Rule }, \\
& =2 x \sin ^{2}\left(2 x^{2}\right)+x^{2}\left(2 \sin \left(2 x^{2}\right) \frac{d}{d x}\left(\sin \left(2 x^{2}\right)\right)\right) & & \text { by the Chain Rule } \\
& =2 x \sin ^{2}\left(2 x^{2}\right)+2 x^{2} \sin \left(2 x^{2}\right) \cos \left(2 x^{2}\right) 4 x & & \text { by the Chain Rule } \\
& =2 x \sin \left(2 x^{2}\right)\left(\sin \left(2 x^{2}\right)+4 x^{2} \cos \left(2 x^{2}\right)\right) & & \text {. }
\end{aligned}
$$

3. Find the two points where the curve $x^{2}+x y+y^{2}=7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?

Since all points on the x-axis have zero y-value, we let $y=0$ in $x^{2}+x y+y^{2}=7$ and solve:

$$
\begin{gathered}
x^{2}=7 \\
x= \pm \sqrt{7} .
\end{gathered}
$$

Therefore, $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ are the two points where the curve $x^{2}+x y+y^{2}=7$ crosses the x-axis. Next, we find $\frac{d y}{d x}$ and show that $\left.\frac{d y}{d x}\right|_{(\sqrt{7}, 0)}=\left.\frac{d y}{d x}\right|_{(-\sqrt{7}, 0)}$.

By taking the derivative of both the left hand side and the right hand side of $x^{2}+x y+$ $y^{2}=7$ with respect to x, we get

$$
\begin{aligned}
2 x+\left(y+x \frac{d y}{d x}\right)+2 y \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+2 y \frac{d y}{d x} & =-2 x-y \\
(x+2 y) \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{x+2 y}
\end{aligned}
$$

Therefore,

$$
\left.\frac{d y}{d x}\right|_{(\sqrt{7}, 0)}=-2=\left.\frac{d y}{d x}\right|_{(-\sqrt{7}, 0)}
$$

which shows that the tangents to the curve at these two points are parallel, since the tangent lines at these points have a common slope.

