MATH 235 Calculus 1
 Quiz 6 Solution

1. Find the following values.
a. $\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$.
b. $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4}$

Note that for both part a and part b, there is one and only one answer, since if you "plug in" any x-value into $\sin ^{-1}$ the function value will always be in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and if you "plug in" any x-value into $\cos ^{-1}$ the function value will always be in $[0, \pi]$.
2. Find the derivative of y with respect to x.
a. $y=\ln \left(\tan ^{-1} x\right)$

$$
\frac{d y}{d x}=\frac{1}{\tan ^{-1} x} \cdot \frac{1}{1+x^{2}}
$$

b. $y=6 \sinh \frac{x}{3}$

$$
\frac{d y}{d x}=6 \cosh \frac{x}{3} \cdot \frac{1}{3}=2 \cosh \frac{x}{3}
$$

3. Solve the following problems.
a. Simplify $(\sinh x+\cosh x)^{4}$.

$$
\begin{aligned}
(\sinh x+\cosh x)^{4} & =\left(\frac{e^{x}-e^{-x}}{2}+\frac{e^{x}+e^{-x}}{2}\right)^{4} \\
& =\left(\frac{e^{x}-e^{-x}+e^{x}+e^{-x}}{2}\right)^{4} \\
& =\left(\frac{2 e^{x}}{2}\right)^{4} \\
& =\left(e^{x}\right)^{4}=e^{4 x}
\end{aligned}
$$

b. $\lim _{x \rightarrow 1^{-}} \sin ^{-1} x=\frac{\pi}{2}$.

You can answer this question by looking at the graph $y=\sin x$, but since we have to find the limit of the inverse of $\sin x$, we have to see what x-value we are approaching as the y-value of $\sin x$ approaches 1 from the left. Your answer is, therefore, $\frac{\pi}{2}$. Note that you can only approach 1 from the left, since we restrict the graph $y=\sin x$ to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ in order to define $y=\sin ^{-1} x$.

