MATH235 Calculus 1 Homework problems on the Squeeze Theorem. 09/08/2010

Use the Squeeze Theorem to solve the following problems:

1. Find $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)$.

Since the range of cosine is always between -1 and 1 ,

$$
-1 \leq \cos \left(\frac{2}{x}\right) \leq 1
$$

By multiplying $x^{4} \geq 0$ to each term in this inequality, we get

$$
-x^{4} \leq x^{4} \cos \left(\frac{2}{x}\right) \leq x^{4}
$$

Therefore, since

$$
\lim _{x \rightarrow 0}-x^{4}=0=\lim _{x \rightarrow 0} x^{4}
$$

by the Squeeze Theorem, we have that $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)=0$.
2. Find $\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}$.

Since the range of sine is always between -1 and 1 ,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Now, since $y=e^{x}$ is an increasing function, this inequality implies that

$$
e^{-1} \leq e^{\sin \left(\frac{1}{x}\right)} \leq e^{1}
$$

and by multiplying $x^{2} \geq 0$ to each term above, we get

$$
x^{2} e^{-1} \leq x^{2} e^{\sin \left(\frac{1}{x}\right)} \leq x^{2} e^{1}
$$

Hence, since

$$
\lim _{x \rightarrow 0} x^{2} e^{-1}=0=\lim _{x \rightarrow 0} x^{2} e^{1}
$$

by the Squeeze Theorem, it follows that $\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}=0$.
3. Let f be a function that satisfies $|f(x)| \leq M$ for all $x \neq 0$. Show that $\lim _{x \rightarrow 0} x f(x)=$ 0. Hint : $|x f(x)|=|x||f(x)|$.

Since $|f(x)| \leq M$, we have

$$
|x f(x)|=|x||f(x)| \leq|x| M
$$

In other words,

$$
-|x| M \leq x f(x) \leq|x| M
$$

Therefore, since

$$
\lim _{x \rightarrow 0}-|x| M=0=\lim _{x \rightarrow 0}|x| M
$$

by the Squeeze Theorem, we conclude that

$$
\lim _{x \rightarrow 0} x f(x)=0
$$

