MATH235 Calculus 1 Proof of the Squeeze Theorem.

Theorem 0.1 (The Squeeze Theorem). Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c except possibly at c itself. If $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$ then $\lim _{x \rightarrow c} f(x)=L$.

Proof. Let $\epsilon>0$ be given. We are done if we find a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \text { whenever } 0<|x-c|<\delta .
$$

Since $\lim _{x \rightarrow c} g(x)=L$, by definition of limits, there exists some $\delta_{1}>0$ such that

$$
|g(x)-L|<\epsilon \text { for all } 0<|x-c|<\delta_{1} .
$$

Thus,

$$
-\epsilon<g(x)-L<\epsilon \text { for all } 0<|x-c|<\delta_{1}
$$

so

$$
\begin{equation*}
L-\epsilon<g(x)<L+\epsilon \text { for all } 0<|x-c|<\delta_{1} . \tag{1}
\end{equation*}
$$

Similarly, since $\lim _{x \rightarrow c} h(x)=L$, by definition of limits, there exists some $\delta_{2}>0$ such that

$$
\begin{equation*}
L-\epsilon<h(x)<L+\epsilon \text { for all } 0<|x-c|<\delta_{2} . \tag{2}
\end{equation*}
$$

Additionally, since $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, there exists some $\delta_{3}>0$ such that

$$
\begin{equation*}
g(x) \leq f(x) \leq h(x) \text { for all } 0<|x-c|<\delta_{3} . \tag{3}
\end{equation*}
$$

Now, we choose $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. Then by (1), (3), and (2), we have that

$$
L-\epsilon<g(x) \leq f(x) \leq h(x)<L+\epsilon \text { for all } 0<|x-c|<\delta
$$

Therefore, $-\epsilon<f(x)-L<\epsilon$ for all $0<|x-c|<\delta$, so

$$
|f(x)-L|<\epsilon \text { for all } 0<|x-c|<\delta
$$

Hence, by definition of limits, $\lim _{x \rightarrow c} f(x)=L$.

