Name: _____

Worksheet 2 MATH 235

Fall, 2010.

Discuss the following problems with your group and write down a complete solution. Show all work.

1. Prove the triangle-inequality: For all $x, y \in \mathbb{R}$

$$|x+y| \le |x| + |y|.$$

- step 1. Discuss with your group if $-|x| \le x \le |x|$ is always true.
- step 2. Write down a similar inequality for *y* as well.
- step 3. Add the two inequalities from step 1 and 2.
- What can you conclude from this final inequality?

2. Suppose $f(x) \leq g(x)$ for all $x \in \mathbb{R}$ and that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$. Show that $L \leq M$.

- step 1. Suppose L > M. Our goal is to reach a contradiction with this assumption to conclude that $L \le M$.
- step 2. Recall that $\lim_{x\to c}(g(x) f(x)) = M L$ and write down the precise definition of $\lim_{x\to c}(g(x) f(x)) = M L$ using ϵ and δ .

- step 3. Pick $\epsilon = L M$ in step 2, which is possible since we are assuming that L M > 0. Then, by using using the fact that $a \le |a|$ for all $a \in \mathbb{R}$, conclude that (g(x) f(x)) (M L) < L M whenever $0 < |x c| < \delta$.
- step 4. Explain why this is a contradiction and conclude your argument.

Observe from your proof that this statement holds true when $f(x) \leq g(x)$ for all x in an open interval containing c (except possibley at c itself) although we have assumed that $f(x) \leq g(x)$ for all $x \in \mathbb{R}$.