Worksheet 2 MATH 235

Name: \qquad
Fall, 2010.
Discuss the following problems with your group and write down a complete solution. Show all work.

1. Prove the triangle-inequality: For all $x, y \in \mathbb{R}$

$$
|x+y| \leq|x|+|y| .
$$

- step 1. Discuss with your group if $-|x| \leq x \leq|x|$ is always true.
- step 2. Write down a similar inequality for y as well.
- step 3. Add the two inequalities from step 1 and 2.
- What can you conclude from this final inequality?

2. Suppose $f(x) \leq g(x)$ for all $x \in \mathbb{R}$ and that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Show that $L \leq M$.

- step 1. Suppose $L>M$. Our goal is to reach a contradiction with this assumption to conclude that $L \leq M$.
- step 2. Recall that $\lim _{x \rightarrow c}(g(x)-f(x))=M-L$ and write down the precise definition of $\lim _{x \rightarrow c}(g(x)-f(x))=M-L$ using ϵ and δ.
- step 3. Pick $\epsilon=L-M$ in step 2, which is possible since we are assuming that $L-M>0$. Then, by using using the fact that $a \leq|a|$ for all $a \in \mathbb{R}$, conclude that $(g(x)-f(x))-(M-L)<L-M$ whenever $0<|x-c|<\delta$.
- step 4. Explain why this is a contradiction and conclude your argument.

Observe from your proof that this statement holds true when $f(x) \leq g(x)$ for all x in an open interval containing c (except possibley at citself) although we have assumed that $f(x) \leq g(x)$ for all $x \in \mathbb{R}$.

