Worksheet 4 MATH 235

Name: \qquad
Fall, 2010.
Discuss the following problems with your group and write down a complete solution. Show all work.

1. Prove that if f is differentiable at $x=c$, then f is continuous at $x=c$.

- step 1. How do you show that f is continuous at $x=c$? Write down what you have to prove.
- step 2. Rewrite the limit appearing in step 1 by using a new variable $h=x-c$.
- step 3. Discuss with your group how the following is true: if $h \neq 0$, then

$$
\begin{aligned}
f(c+h) & =f(c+h)-f(c)+f(c), \\
& =\frac{f(c+h)-f(c)}{h} \cdot h+f(c) .
\end{aligned}
$$

- step 4. By using step 3, find $\lim _{h \rightarrow 0} f(c+h)$. Discuss where you are using the given information that f has a derivative at $x=c$.
- Put all of the above steps together and write down a complete mathematical proof.

2. Is the converse of the previous statement true? In other words, is it true that if f is continuous at $x=c$, then f is differentiable at $x=c$? We can show that this statement is FALSE by finding a counterexample. Show that $f(x)=|x|$ is continuous at $x=0$ but it is not differentiable at $x=0$.
