\qquad

Discuss the following problems with your group and write down a complete solution. Show all work.

1. Prove the Product Rule: if f and g are differentiable, then so is their product $P(x)=f(x) g(x)$, and

$$
P^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) .
$$

- step 1. Write down the limit definition of $P^{\prime}(x)$ in terms of f and g.
- step 2. Subtract $f(x+h) g(x)$ from the first term of the numerator and add $f(x+h) g(x)$ to the second term of the numerator. Convince yourself that you are simply rewriting your answer in step 1 by doing so without changing anything.
- step 3. Make manipulations in step 2 to reach:

$$
\lim _{h \rightarrow 0}\left(f(x+h) \cdot \frac{g(x+h)-g(x)}{h}+g(x) \cdot \frac{f(x+h)-f(x)}{h}\right) .
$$

- step 4 . We would like to split the limit in step 3 into separate limits of each term appearing there, but in order to do so, we know that the limits $\lim _{h \rightarrow 0} f(x+h)$, $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}, \lim _{h \rightarrow 0} g(x)$, and $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ must all exist. Verify that each of these limits do exist. Then, write down what each of those limits are, and conclude your argument. To verify that $\lim _{h \rightarrow 0} f(x+h)$ exists and it is in fact equal to $f(x)$, explain why f is continuous, and why continuity of f implies $\lim _{h \rightarrow 0} f(x+h)=f(x)$.
- By putting the above steps together, write down a complete mathematical proof.

2. Prove the Quotient Rule: if f and g are differentiable, then so is their quotient $Q(x)=$ $\frac{f(x)}{g(x)}$, and

$$
Q^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} .
$$

- step 1. Write down the limit definition of $Q^{\prime}(x)$ in terms of f and g.
- step 2. Rewrite the answer in step 1 so that you do not see fractions in the numerator.
- step 3. Make manipulations in step 2 to reach:

$$
\lim _{h \rightarrow 0} \frac{1}{g(x+h) g(x)}\left(g(x) \cdot \frac{f(x+h)-f(x)}{h}-f(x) \cdot \frac{g(x+h)-g(x)}{h}\right) .
$$

- step 4. Verify, as in step 4 of the proof of the Product Rule, that we can split the limit in step 3 into separate limits of each term appearing there and conclude your argument.
- By putting the above steps together, write down a complete mathematical proof.

