Worksheet 6 MATH 235

10/21/2010
Discuss the following problems with your group and write down a complete solution. Show all work.

1. (The Derivative Rule for Inverses.) Let f be a continuous one-to-one function defined on an interval. Suppose f is differentiable at $x=a$ and $f^{\prime}(a) \neq 0$. If $f(a)=b$, show that $\left(f^{-1}\right)^{\prime}(b)$ exists and that

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}
$$

- step 1. Write down the limit definition of $\left(f^{-1}\right)^{\prime}(b)$.
- step 2. Pick $k \in \mathbb{R}$ so that $f^{-1}(b+h)=a+k$ (equivalently $f(a+k)=b+h$) and continue from step 1 to reach:

$$
\left(f^{-1}\right)^{\prime}(b)=\lim _{h \rightarrow 0} \frac{k}{f(a+k)-f(a)}
$$

- step 3. If h approaches zero, what number does $k=f^{-1}(b+h)-a$ approach? You will have to use the fact that f^{-1} is continuous. This is true, since it is given that f is continuous. Continuing from step 2 , conclude that

$$
\left(f^{-1}\right)^{\prime}(b)=\lim _{k \rightarrow 0} \frac{k}{f(a+k)-f(a)}=\frac{1}{f^{\prime}(a)}=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)} .
$$

- By putting the above steps together, write down a complete mathematical proof.

2. From the previous problem, we now know that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

for all x in the domain of f^{-1}. By using this result, derive the derivative of the following functions.

- $y=\ln x$
- $y=\log _{2} x$
- $y=\sin ^{-1} x$
- $y=\cos ^{-1} x$
- $y=\tan ^{-1} x$

