Worksheet 6 MATH 235
 10/21/2010

1. (The Derivative Rule for Inverses.) Let f be a continuous one-to-one function defined on an interval. Suppose f is differentiable at $x=a$ and $f^{\prime}(a) \neq 0$. If $f(a)=b$, show that $\left(f^{-1}\right)^{\prime}(b)$ exists and that

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}
$$

Proof. By the limit definition of $\left(f^{-1}\right)^{\prime}(b)$, we have that

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}(b)=\lim _{h \rightarrow 0} \frac{f^{-1}(b+h)-f^{-1}(b)}{h} . \tag{0.1}
\end{equation*}
$$

Define $k \in \mathbb{R}$ so that

$$
\begin{equation*}
f^{-1}(b+h)=a+k \quad \text { or } \quad f(a+k)=b+h . \tag{0.2}
\end{equation*}
$$

Then, since $f^{-1}(b)=a$ and $f(a)=b$, by (0.2) and (0.1), we get

$$
\begin{align*}
\left(f^{-1}\right)^{\prime}(b) & =\lim _{h \rightarrow 0} \frac{a+k-a}{h} \\
& =\lim _{h \rightarrow 0} \frac{k}{f(a+k)-f(a)} . \tag{0.3}
\end{align*}
$$

Notice that, as h approaches zero, $k=f^{-1}(b+h)-a$ also approaches zero, since

$$
\lim _{h \rightarrow 0}\left(f^{-1}(b+h)-a\right)=f^{-1}\left(\lim _{h \rightarrow 0}(b+h)\right)-a=f^{-1}(b)-a=0,
$$

where we have used the continuity of f^{-1} in the first equality above. Note that f^{-1} is continuous, since f is continuous. Therefore, we can rewrite (0.3) as

$$
\begin{array}{rlr}
\left(f^{-1}\right)^{\prime}(b) & =\lim _{k \rightarrow 0} \frac{k}{f(a+k)-f(a)} \\
& =\frac{1}{f^{\prime}(a)} \\
& =\frac{1}{f^{\prime}\left(f^{-1}(b)\right)} . & \text { since } \lim _{k \rightarrow 0} \frac{f(a+k)-f(a)}{k}=f^{\prime}(a),
\end{array}
$$

