Worksheet 6 MATH 235 10/21/2010

1. (The Derivative Rule for Inverses.) Let f be a continuous one-to-one function defined on an interval. Suppose f is differentiable at x = a and $f'(a) \neq 0$. If f(a) = b, show that $(f^{-1})'(b)$ exists and that

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}.$$

Proof. By the limit definition of $(f^{-1})'(b)$, we have that

(0.1)
$$(f^{-1})'(b) = \lim_{h \to 0} \frac{f^{-1}(b+h) - f^{-1}(b)}{h}.$$

Define $k \in \mathbb{R}$ so that

(0.2)
$$f^{-1}(b+h) = a+k$$
 or $f(a+k) = b+h$.
Then since $f^{-1}(b)$ and $f(a)$ here $(0, 2)$ and $(0, 1)$ we get

Then, since $f^{-1}(b) = a$ and f(a) = b, by (0.2) and (0.1), we get

(0.3)
$$(f^{-1})'(b) = \lim_{h \to 0} \frac{a+k-a}{h} = \lim_{h \to 0} \frac{k}{f(a+k) - f(a)}.$$

Notice that, as *h* approaches zero, $k = f^{-1}(b+h) - a$ also approaches zero, since

$$\lim_{h \to 0} (f^{-1}(b+h) - a) = f^{-1}(\lim_{h \to 0} (b+h)) - a = f^{-1}(b) - a = 0,$$

where we have used the continuity of f^{-1} in the first equality above. Note that f^{-1} is continuous, since f is continuous. Therefore, we can rewrite (0.3) as

$$(f^{-1})'(b) = \lim_{k \to 0} \frac{k}{f(a+k) - f(a)}$$

= $\frac{1}{f'(a)}$ since $\lim_{k \to 0} \frac{f(a+k) - f(a)}{k} = f'(a),$
= $\frac{1}{f'(f^{-1}(b))}.$

1