Worksheet 7 MATH 235

10/28/2010
Discuss the following problems with your group and write down a complete solution. Show all work.

1. (Rolle's Theorem) Suppose $y=f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists at least one number $c \in(a, b)$ such that $f^{\prime}(c)=0$.
2. (The Mean Value Theorem) Suppose $y=f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then, there exists at least one number $c \in(a, b)$ such that $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$.

- step 1. Consider the line joining $(a, f(a))$ and $(b, f(b))$. If this line is the graph of the function $y=g(x)$, find a formula for $g(x)$.
- step 2. Define $h(x)=f(x)-g(x)$. Why is h continuous on $[a, b]$? Why is h differentiable on (a, b) ?
- step 3. Find $h(a)$ and $h(b)$.
- step 4. Notice that we can apply Rolle's Theorem to h by step 2 and step 3. What does Rolle's Theorem tell you?
- step 5. What is $h^{\prime}(x)$? Conclude that there exists a c in (a, b) such that $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$.
- By putting the above steps together, write down a complete mathematical proof.

