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POSTULATE 5.
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€4’ & pépy elolv al Tav Svo Spbav éNdoaoves.

That, if a straight line falling on two straight lines make the intevior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.

Although Aristotle gives a clear idea of what he understood by a pestulate,
he does not give any instances from geometry; still less has he any allusion
recalling the particular postulates found in Euclid. We naturally infer that
the formulation of these postulates was Euclid’s own work. There is a more
positive indication of the originality of Postulate s, since in the passage (Ana/.
prier. 11. 16, 65 a 4) quoted above in the note on the definition of parallels he
alludes to some petitio principit involved in the theory of parallels current in
his time. This reproach was removed by Euclid when he laid down this
epoch-making Postulate. When we consider the countless successive attempts
made through more than twenty centuries to prove the Postulate, many of
them by geometers of ability, we cannot but admire the genius of the man
who concluded that such a hypothesis, which he found necessary to the
validity of his whole system of geometry, was really indemonstrable.

From the very beginning, as we know from Proclus, the Postulate was
attacked as such, and attempts were made to prove it as a theorem or to get
rid of it by adopting some other definition of parallels; while in modern times
the literature of the subject is enormous. Riccardi (Saggro di una bibliografia
Euclidea, Part 1v., Bologna, 1890) has twenty quarto pages of titles of mono-
graphs relating to Post. 5 between the dates 1607 and 1887. Max Simon
(Ueber die Entwicklung der Elementar-geometrie im XIX. Jakrhundert, 1906)
notes that he has seen three new attempts, as late as 1891 (a century after
Gauss laid the foundation of non-Euclidean geometry), to prove the theory of
parallels independently of the Postulate. Max Simon himself (pp. 53—61)
gives a lar%,c number of references to books or articles on the subject and
refers to the copious information, as to contents as well as names, con-
tained in Schotten’s Jnkalt und Methode des planimelrischen Unterrichis, 1.
pp- 183—332.

This note will include some account of or allusion to a few of the most
noteworthy attempts to prove the Postulate. Only those of ancient times, as
being less generally accessible, will be described at any length; shorter
references must sufficein the case of the modern geometers who have made
the most important contributions to the discussion of the Postulate and have
thereby, in particular, contributed most towards the foundation of the non-
Euclidean geometries, and here I shall make use principally of the valuable
Article 8, Sulla teoria delle paraliele ¢ sulle geometrie non-cuclidee (by Roberto
Bonola), in Questiont riguardanti le matemaliche elementari, 1. pp. 247—363.

Proclus (p. 191, 21 sqq.) states very clearly the nature of the first objec-
tions taken to the Postulate.

“This ought even to be struck out of the Postulates altogether ; for it is a
theorem involving many difficulties, which Ptolemy, in a certain book, set
himself to solve, and it requires for the demonstration of it a number
of definitions as well as theorems. And the converse of it is actually
proved by Euclid himself as a theorem. It may be that some would be
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deceived and would think it proper to place even the assumption in question
among the postulates as affording, in the lessening of the two right angles,
ground for an instantaneous belief that the straight lines converge and meet.
To such as these Geminus correctly replied that we have learned from the
very pioneers of this science not to have any regard to mere plausible imagin-
ings when it is a question of the reasonings to be included in our geometrical
doctrine, For Aristotle says that it is as justifiable to ask scientific proofs of
a rhetorician as to accept mere plausibilities from a geometer; and Simmias is
made by Plato to say that he recognises as quacks those who fashion for
themselves proofs from probabilities. So in this case the fact that, when the
right angles are lessened, the straight lines converge is true and necessary;
but the statement that, smce they converge more and more as they are pro-
duced, they will sometime meet is plausible but not necessary, in the absence
of some argument showing that this is true in the case of straight lines. For
the fact that some lines exist which approach indefinitely, but yet remain
non-secant (doduwrawrod), although it seems improbable and paradoxical, is
nevertheless true and fully ascertained with regard to other species of lines.
May not then the same thing be possible in the case of straight lines which
happens in the case of the lines referred to? Indeed, until the statement in
the Postulate is clinched by proof, the facts shown in the case of other lines
may direct our imagination the opposite way. And, though the controversial
arguments against the meeting of the straight lines should contain much that
is surprising, is there not all the more reason why we should expel from our
body of doctrine this merely plausible and unreasoned (hypothesis)?

“It is then clear from this that we must seek a proof of the present
theorem, and that it is alien to the special character of postulates. But how
it should be proved, and by what sort of arguments the objections taken to
it should be removed, we must explain at the point where the writer of the
Elements is actually ‘about to recall it and use it as obvious. It will be
necessary at that stage to show that its obvious character does not appear
independently of proof, but is turned by proof into matter of knowledge.”

Before passing to the attempts of Ptolemy and Proclus to prove the
Postulate, I should note here that Simplicius says (in an-Nairizi, ed. Besthorn-
Heiberg, p. 119, ed. Curtze, p. 65) that this Postulate is by no means manifest,
but requires proof, and accordingly ‘ Abthiniathus” and Diodorus had
already proved it by means of many different propositions, while Ptolemy also
had explained and proved it, using for the purpose Eucl. 1. 13, 15 and 16 (or
18). The Diodorus here mentioned may be the author of the 4nalemma on
which Pappus wrote a commentary. It is difficult even to frame a conjecture
as to who “Abthiniathus” is. In one place in the Arabic text the name
;pears to be written ““ Anthisathus” (H. Suter in Zeitschrift fiir Math. und

hysik, xxxvir, hist. litt. Abth. p. 194). It has occurred to me whether he
might be Peithon, a friend of Serenus of Antinoeia (Antinoupolis) who was
long known as Serenus of Antissa. Serenus says (De sectione cylindri, ed.
Heiberg, p. 96): “Peithon the geometer, explaining parallels in a work of his,
was not satisfied with what Euclid said, but showed their nature more cleverly
by an example; for he says that parallel straight lines are such a thing as we
see on walls or on the ground in the shadows of pillars which are made when
either a torch or a lamp is burning behind them. And although this has only
been matter of merriment to every one, I at least must not deride it, for the
res I have for the author, who is my friend.” If Peithon was known as

Antinoeia ” or “of Antissa,” the two forms of the mysterious name might
perhaps be an attempt at an equivalent; but this is no more than a guess.
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Simplicius adds in full and word for word the attempt of his “friend” or
his “ master Aganis” to prove the Postulate.

Proclus returns to the subject (p. 365, 5) in his note on Eucl. 1. 29. He
says that before his time a certain number of geometers had classed as a
theorem this Euclidean postulate and thought it matter for proof, and he then
proceeds to give an account of Ptolemy’s argument.

Noteworthy attempts to prove the Postulate.
Ptolemy.

We learn from Proclus (p. 365, 7—11) that Ptolemy wrote a book on the
proposition that “straight lines drawn from angles less than two right angles
meet if produced,” and that he used in his “ proof” many of the theorems in
Euclid preceding 1. 29. Proclus excuses himself from reproducing the early
part of Ptolemy’s argument, only mentioning as one of the propositions
proved in it the theorem of Eucl. 1. 28 that, if two straight lines meeting a
transversal make the two interior angles on the same side equal to two right
angles, the straight lines do not meet, however far produced.

I. From Proclus’ note on 1. 28 (p. 362, 14 sq.) we know that Ptolemy
proved this somewhat as follows.

Suppose that there are two straight lines 45,' CD, and that EFGH,
meeting them, makes the angles BFG, FGD equal to two right angles.
I say that 4B, CD are parallel, that is, they
are non-secant. E

For, if possible, let #B, G.D meet at K. A B

Now, since the angles BFG, FGD are
equal to two right angles, while the four L K
angles AFG, BFG, FGD, FGC are together
equal to four right angles,

the angles 47G, FGC are equal to two
right angles.

“If therefore FB, GD, when the interior angles are equal to two right
angles, meet at K, the straight lines FA, GC will also meet if produced; for the
angles AFG, CGF are also equal to two right angles.

““Therefore the straight lines will either meet in both directions or in
neitlher direction, if the two pairs of interior angles are both equal to two right
angles.

“Let, then, #4, GC meet at L.

“Therefore the straight lines ZABKX, LCDK enclose a space: which is
impossible.

“Therefore it is not possible for two straight lines to meet when the
interior angles are equal to two right angles. Therefore they are lel.”

[The argument in the words italicised would be clearer if 1t" had been
shown that the two interior angles on one side of £.H are severally equal to the
two interior angles on the other, namely BFG to CGF and FGD to AFG;
whence, assuming F5B, GD to meet in &, we can take the triangle X7G and
place it (e.g. by rotating it in the plane about O the middle point of #G) so
that #G falls where GFis in the figure and G.D falls on F4, in which case
#B must also fall on GC; hence, since FB, GD meet at K, GC and FA4
must meet at a corresponding point Z. Or, as Mr Frankland does, we may
substitute for #G a straight line MV through O the middle point of G
drawn perpendicular to one of the parallels, say 48. Then, since the two
triangles OMF, ONG have two angles equal respectively, namely FOM to
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GON (1. 15) and OFM to OGN, and one side OF equal to one side OG, the
triangles are congruent, the angle ONG is a right angle, and M/ is perpen-
dicular to both 48 and CD. Then, by the same method of application,
MA, NC are shown to form with MV a triangle MALCN congruent with
the triangle NOKBM, and MA, NC meet at a point L corresponding to X.
Thus the two straight lines would meet at the #wo points X, Z. This is what
happens under the Riemann hypothesis, where the axiom that two straight
lines cannot enclose a space does not hold, but all straight lines meeting in
one point have another point common also, and e.g. in the particular figure
just used X, L are points common to all perpendiculars to MN. If we
suppose that X, Z are not distinct points, but one point, the axiom that two
straight lines cannot enclose a space is nof contradicted.]

II. Ptolemy now tries to prove 1. 29 without using our Postulate, and
then deduces the Postulate from it (Proclus, pp. 365, 14—367, 27).

The argument to prove 1. 29 is as follows.

The straight line which cuts the parallels must make the sum of the
interior angles on the same side equal to, greater

or less than, two right angles. A F B

“Let AB, CD be parallel, and let #G meet
them. I say (1) that FG does not make the
interior angles on the same side greater than two g a b
right angles.

“For, if the angles A5G, CGF are greater than two right angles, the
remaining angles BFG, DGF are less than two right angles.

* But the same two angles are also greater than two right angles ; for AF,
CG are no more parallel than B, GD, so that, if the straight line falling on
AF, CG makes the interior angles greater than two right angles, the strasght line
Jalling on ¥B, GD will also make the interior angles greater than two right
angles.
“But the same angles are also less than two right angles; for the four
angles AFG, CGF, BFG, DGF are equal to four right angles:
which ic impossible.

* Similarly (2) we can show that the straight line falling on the parallels
does not make the interior angles on the same side less than two right angles.

“But (3), if it makes them neither greater nor less than two right angles,
it can only make the interior angles on the same side egual to two right
angles.”

III. Ptolemy deduces Post. 5 thus:

Suppose that the straight lines making angles with a transversal less than
two right angles do not meet on the side on which those angles are.

Then, a fortiori, they will not meet on the other side on which are the
angles greafer than two nght angles. :

Hence the straight lines will not meet in either direction; they are there-
fore paralle.

But, if so, the angles made by them with the transversal are equal to two
ight angles, by the preceding proposition (= 1. 29).
nghTﬁu;aefore {he same angles will be both equal to and less than two right
angles :
which is imiom'ble.

Hence the straight lines will meet.
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IV. Ptolemy lastly enforces his conclusion that the straight lines will
meet on the side on whick are the angles less than two right angles by recurring
to the @ fortiori step in the foregoing proof.

Let the angles AFG, CGF in the accompanying figure be together less
than two right angles.

Therefore the angles BFG, DGF are greater E 5
than two right angles.

We have proved that the straight lines are not
non-secant.

If they meet, they must meet either towards
A, C, or towards B, D.

(1) Suppose they meet towards B, D, at X.

Then, since the angles 4G, CGF are less than
two right angles, and the angles 47G, GFB are
equal to two right angles, take away the common angle 4FG, and

the angle CGF is less than the angle BFG;

that is, the exterior angle of the triangle X#G is less than the interior and
opposite angle BFG :
which is impossible.

Therefore A5, CD do not meet towards 5, D.

(2) But they do meet, and therefore they must meet in one direction or
the other:

therefore they meet towards 4, 5, that is, on the side where are the
angles less than two right angles.

The flaw in Ptolemy’s argument is of course in the part of his proof of
1. 29 which I have italicised. As Proclus says, he is not entitled to assume
that, if 48, CD are parallel, whatever is true of the interior angles on one
side of /G (i.e. that they are together equal to, greater than, or less than, two
right angles) is necessarily true at the same time of the interior angles on the
other side. Ptolemy justifies this by saying that #4, GC are no more parallel
in one direction than 7B, GD are in the other: which is equivalent to the
assumption that Mraugﬁ any point only one parallel can be drawn lo a given
straight line. 'That is, he assumes an equivalent of the very Postulate he is
endeavouring to prove.

Proclus.

Before passing to his own attempt at a proof, Proclus (p. 368, 26 sqq.)
examines an ingenious argument (recalling somewhat the famous one about
Achilles and the tortoise) which appeared to show that it was impossible for
the lines described in the Postulate to meet.

Let AB, CD make with I C the angles B4C, ACD together less than

two right angles.

Bisect AC at £ and along 45, CD B
respectively measure 47, CG so that each
is equal to A£.

Bisect #G at & and mark off FK|
GL each equal to #H; and so on. = 7 D

Then A4F, CG will not meet at any
point on FG ; for, if that were the case, two sides of a triangle would be

together equal to the third: which is impossible.
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Similarly, 48, CD will not meet at any point on XZ; and “proceeding
like this indefinitely, joining the non-coincident points, blsecl.lng the lines so
drawn, and cutting off from the straight lines portions equal to the half of
these, they say they thereby prove that the straight lines 4.5, CD will not
meet anywhere.”

It is not surprising that Proclus does not succeed in exposing the fallagy
here (the fact being that the process will indeed be endless, and yet the straight
lines will intersect within a finite distance). But Proclus’ criticism contains
nevertheless something of value. He says that the argument will prove too
much, since we have only to join 4G in order to see that straight lines making
some amgles which are together less than two right angles do in fact meet,
namely 4G, CG. “Therefore it is not possible to assert, without some definite
limitation, that the straight lines produced from angles less than two right
angles do not meet. On the contrary, it is manifest that some straight lines,
when produced from angles less than two right angles, do meet, although the
argument seems to require it to be proved that this property belongs to all
such straight lines. For one might say that, the lessening of the two right
angles being subject to no limitation, witk such and such an amount of
lessening the straight lines remain non-secant, but with an amount of lessening
in excess of this they meet (p. 371, 2—10).”

[Here then we have the germ of such an idea as that worked out by
Lobachewsky, namely that the straight lines issuing from a point in a plane
can be divided with reference to a straight line lying in that plane into two
classes, “secant” and “non-secant,” and that we may define as parallel the
two straight lines which divide the secant from the non-secant class.

Proclus goes on (p. 371, 10) to base his own argument upon “an axiom
such as Aristotle too used in arguing that the universe is finjte. For, if from
one point two straight lines forming an angle be produced indefinitely, the distance
(Swaoraos, Arist. dudornua) between the said straight lines produced indefinitely
will exceed any finite magnitude. Aristotle at all events showed that, if the
straight lines drawn from the centre to the circumference are infinite, the
interval between them is infinite. For, if it is finite, it is impossible to
increase the distance, so that the straight lines (the radii) are not infinite.
Hence the straight lines, when produced indefinitely, will be at a distance from
one another greater than any assumed finite magnitude_”

This is a fair representatton of Aristotle’s argument in De caelo 1. 5, 271
b 28, although of course it is not a proof of what Proclus assumes as an
axiom.

This being premised, Proclus proceeds (p. 371, 24):

I. “1 say that, if any straight line cuts one of two parallels, it will cut
the other also.
o “For let A8, CD be parallel, and let £FG cut A58 ; 1 say that it will cut

D also.

“For, since BF, FG are two straight lines from E
one point £, they ha\re, when produced indefinitely, 8
a distance greater than any magnitude, so that it will
also be greater than the interval between the parallels.
Whenever therefore they are at a distance from one €~ »p
another greater than the distance between the parallels,
FG will cut CD.

“ Therefore etc.”
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II. “Having proved this, we shall prove, as a deduction from it, the
theorem in question.

“For let AB, CD be two straight lines, and let £F falling on them make
the angles BEF, DFE less than two right angles.

“] say that the straight lines will meet onthat A——_ €

side on which are the angles less than two right K “""“*—-.5
angles.
“For, since the angles BEF, DFE are less ¢ F D

than two right angles, let the angle ZE B be equal
to the excess of two right angles (over them), and let #Z be produced to X.

“Since then EF falls on KA, CD and makes the two interior angles

HEF, DFE equal to two right angles,
the straight lines AKX, CD are parallel.

“And 48 cuts K& ; therefore it will also cut C.D, by what was before
shown.

“Therefore 4.8, C.D will meet on that side on which are the angles less
than two right angles.

“ Hence the theorem is proved.”

Clavius criticised this proof on the ground that the axiom from which
it starts, taken from Aristotle, itself requires proof. He points out that, just
as you cannot assume that two lines which continually approach one another
will meet (witness the hyperbola and its asymptote), so you cannot assume
that two lines which continually diverge will ultimately be so far apart that a

perpendicular from a point on one let fall on the other will be greater than
any assigned distance; and he refers to the conchoid of Nicomedes, which
continually approaches its asymptote, and therefore continually gets farther
away from the tangent at the vertex; yet the perpendicular from any point on
the curve to that tangent will always be less than the distance between the
tangent and the asymptote. Saccheri supports the objection.

Proclus’ first proposition is open to the objection that it assumes that two
“parallels” (in the Euclidean sense) or, as we may say, two straight lines
which have a common perpendicular, are (not necessarily equidistant, but)
so related that, when they are produced indefinitely, the perpendicular from a
point of one upon the other remains finite.

This last assumption is incorrect on the hyperbolic hypothesis; the
“axiom” taken from Aristotle does not hold on the elliptic hypothesis.

Nasiraddin at-Tasi.

The Persian-born editor of Euc[ld, whose date is 1201—1274, has three
lemmas leading up to the final proposition. Their content is substantially as
follows, the first lemma being apparently assumed as evident.

I. (a) If AB, CD be two straight lines such that successive perpen-
diculars, as £F, GH, KL, from points on 48 to CD always make with A8
unequal angles, which are always acute on the side towards B and always
obtuse on the side towards 4, then the lines 45,

CD, solong as they do not cut, approach continually x 6 E
nearer in the direction of the acute angles and diverge 8
continually in the direction of the obtuse angles, and

the perpendiculars diminish towards 8, D, and in-

crease towards A4, C. L HF

(#) Conversely, if the perpendiculars so drawn
continually become shorter in the direction of B, D, and longer in the

A
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direction of A4, C, the straight lines 4.8, CD approach continually nearer in
the direction of B, D and diverge continually in the other direction ; also
each perpendicular will make with 48 two angles one of which is acute and
the other is obtuse, and all the acute angles will lie in the direction towards
B, D, and the obtuse angles in the opposite direction.

[Saccheri points out that even the first part (@) requires proof. As
regards the converse (6) he asks, why should not the successive acute angles
made by the perpendiculars with 4.8, while remaining acute, become greater
and greater as the perpendiculars become smaller until we arrive at last at a
perpendicular which is a common perpendicular to Jo#% lines? If that happens,
all the author’s efforts are in vain. And, if you are to assume the truth of the
statement in the lemma without proof, would it not, as Wallis said, be as
casy to assume as axiomatic the statement in Post. 5 without more ado?]

II. If AC, BD le drawn from the extremities of AB at right angles to it
and on the same side, and if AC, BD be made equal to one another and CD le
Joined, eack of the angles ACD, BDC will be right, and D =
CD will be equal to AB. ~

The first part of this lemma is proved by reductio ad
absurdum from the preceding lemma. If, e.g., the angle
ACD is not right, it must either be acute or obtuse. g A

Suppose it is acute ; then, by lemma 1, AC is greater
than B0, which is contrary to the hypothesis, And so on.

The angles 4CD, BDC being proved to be right angles, it is easy to
prove that 4.8, CD are equal.

[It is of course assumed in this “ proof ” that, if the angle 4CD is acute,
the angle BDC is obtuse, and vice versa.]

I1L. 7n any triangle the three angles are logether equal to two right angles.

This is proved for a right-angled triangle by means of the foregoing lemma,
the four angles of the quadrilateral 4 8CD of that lemma being all right angles.
The proposition is then true for any triangle, since any triangle can be divided
into two right-angled triangles.

IV. Here we have the final “proof” of Post, 5. Three cases are
distinguished, but it is enough to show the case where one of the interior
angles is right and the other acute.

Suppose 4.8, CD to be two straight lines met by FCE making the angle
with CD or not coincide with it. In the F
former case the proposition is proved.

ECD a right angle and the angle CEB
an acute angle. P
Take any point G on £B, and draw 0
W
G a
i [n
N L v H =
If GH does not coincide with CD
but falls on the side of it towards & C.D, being within the triangle formed by
the perpendicular and by CE, EG, must cut £G. [An axiom is here used,

GH perpendicular to EC.
namely that, if CD be produced far enough, it must pass ouside the triangle

Since the angle CEG is acute, the
perpendicular GA will fall on the side-of

and therefore cut seme side, which must be ZJB, since it cannot be the
dicular (1. 27), or CE.]

E towards D, and will either coincide
Lastly, let GH fall on the side of CD towards £.
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Along HTC set off HK, KL etc., each equal to EH, until we get the first
point of division, as A, beyond C.

Along GB set of GN, NO etc., each equal to £G, until £P is the same
multiple of £G that EM is of EH.

Then we can prove that the perpendiculars from &, O, £ on £C fall on
the points X, Z, M respectively.

For take the first perpendicular, that from ] and call it VS.

Draw £Q at right angles to £4 and equal to GA, and set off S& along
SN also equal to GH. Join QG, GR.

Then (second lemma) the angles £QG, QGH are right, and QG = EH.

Similarly the angles SRG, RGH are right, and RG = SH.

Thus RGQ is one straight line, and the vertically opposite angles VG R,
E£GQ are equal.  The angles NRG, EQG are both right, and NG = GE, by
construction.

Therefore (1. 26) RG = GQ;

whence SH = HE = KH, and S coincides with X.

We may proceed similarly with the other perpendiculars.

Thus PM is perpendicular to FE. Hence CD, being parallel to MP and
within the triangle PME, must cut 2P, if produced far enough.

John Wallis.

As is well known, the argument of Wallis (1616—1703) assumed as a
postulate that, given a figure, another figure is possible which is similar to the
given one and of any size whatever. In fact Wallis assumed this for friangles
only. He first proved (1) that, if a finite straight line is placed on an infinite
straight line, and is then moved in its own direction as far as we please,
it will always lie on the same infinite straight line, (z) that, if an angle be
moved so that one leg always slides along an infinite straight line, the angle
will remain the same, or equal, (3) that, if two straight lines, cut by a third,
make the interior angles on the same side less than two right angles, each
of the exterior angles 1s greater than the opposite
interior angle (proved by means of 1. 13). g D 8

(4) If AB, CD make, with 4C, the interior
angles less than two right angles, suppose 4C
(with 43 rigidly attached to it) to move along ————¢ N
AF to the position ay, such that a coincides
with C. If 4.5 then takes the position af, af lies entirely outside CD (proved
by means of (3) above).

(5) With the same hypotheses, tke straight line o, or AB, during its
otion, and before a reaches C, must cut the straight line CD.

}6) Here is enunciated the postulate stated above.

7) Postulate 5 is now proved thus.

Let AB, CD be the straight lines which make, with the infinite straight

line ACF meeting them, the interior angles

BAC, DCAtogether less than two right angles. PN
Suppose A C (with 4.5 rigidly attached to 1Y
it) to move along ACF until 48 takes the B, |D\B

position of af cutting CD in =
Then, aCr being a triangle, we can, by
the above postulate, suppose a triangle drawn Y
on the base CA similar to the triangle aCr. ' EarEn
Let it be ACP.
[Wallis here interposes a defence of the hypothetical construction.]
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Thus CP and AP meet at P; and, as by the definition of similar figures
the angles of the triangles PCA, wCa are respectively equal, the angle PC4
being equal to the angle wCa and the angle PAC to the angle waC or BAC,
it follows that CP, AP lie on CD, AB produced respectively.

Hence 48, CD meet on the side on which are the angles less than two
right angles.

[The whole gist of this proof lies in the assumed postulate as to the
existence of similar fi ; and, as Saccheri points out, this is equivalent to
unconditionally assuming the “hypothesis of the right angle,” and consequently
Euclid’s Postulate 5.]

Gerolamo Saccheri.

The book Euclides ab omni naevo vindicatus (1733) by Gerolamo Saccheri
(1667—1733), a Jesuit, and professor at the University of Pavia, is now
accessible (1) edited in German by Engel and Stickel, Die Theoriz der
Parallellinien von Euklid bis auf Gauss, 1895, pp. 41—136, and (2) in an
Italian version, abridged but annotated, L' Euclide emendato del P. Gerolamo
Saccheri, by G. Boccardini (Hoepli, Milan, 1904). It is of much greater
importance than all the earlier attempts to prove Post. 5 because Saccheri
was the first to contemplate the possibility of hypotheses other than that of
Euyclid, and to work out a number of consequences of those hypotheses.
He was therefore a true precursor of Legendie and of Lobachewsky, as
Beltrami called him (188g), and, it might be added, of Riemann also. For,
as Veronese observes (Fondamenti di geomelria, p. 570), Saccheri obtained
a il;t;:lpse of the theory of parallels in all its generality, while Legendre,
Lobachewsky and G. Bolyai excluded a priori, without knowing it, the “ hypo-
thesis of the obtuse angle,” or the Riemann hypothesis. Saccheri, however,
was the victim of the preconceived notion of his time that the sole possible
geometry was the Euclidean, and he presents the curious spectacle of a man
laboriously erecting a structure upon new foundations for the very purpose of
demolishing it afterwards; he sought for contradictions in the heart of the
systems which he constructed, in order to prove thereby the falsity of his
hypotheses.

For the purpose of formulating his hypotheses he takes a plane quadri-
lateral 4BDC, two opposite sides of which, 4C, BD,
are equal and perpendicular to a third 48. Then the 4 D
angles at C and D are easily proved to be equal. On P
the Euclidean hypothesis they are both right angles; g
but apart from this hypothesis they might be both S
obtuse or both acute. To the three possibilities, whick - \\\
Saccheri distinguishes by the names (1) #e Aypothesis of |
the right angle, (2) the hypothesis of the obtuse angle and
(3) the hypothesis of the acute angle respectively, there corresponds a certain

up of theorems; and Saccheri’s point of view is that the Postulate will
E:ocompletely proved if the consequences which follow from the last twe
hypotheses comprise results inconsistent with one another.

Among the most important of his propositions are the following :

(1) I the hypothesis of the right angle, or of the obtuse angle, or of the acute
angle is proved frue in a single case, it is true in every other case. (Props. v.,
Vi., VIL)

(2) According as the hypothesis of the right angle, the obtuse angle, or the
acute angle is true, the sum of the three angles of a triangle is equal lo, greater
than, or less than two right angles. (Prop. 1x.)

-
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(3) From the existence of a single triangle in whick the sum of the angles is
equal lo, greater than, or less than two right angles the truth of the hypothesis
of the right angle, obtuse angle, or acute angle respectively follows. (Prop. xv.)

These propositions involve the following: ff in a single triangle the sum
of the angles is equal to, greater than, or less than two right angles, then any
triangie has the sum of its angles equal to, greater than, or less than two right
angles respectively, which was proved about a century later by Legendre for
the two cases only where the sum is egual fo or less than two right angles.

The proofs are not free from imperfections, as when, in the proofs of
Prop. x11 and the part of Prop. x1n. relating to the hypothesis of the ebfuse
angle, Saccheri uses Eucl. 1. 18 depending on 1 16, a proposition which is
only valid on the assumption that straight lines are infinite in length ; for this
assumption itself does not hold under the hypothesis of the obtuse angle
(the Riemann hypothesis).

The hypothesis of the acute angle takes Saccheri much longer to dispose
of, and this part of the book is less satlsfactory, but it contains the fotlowmg
propositions afterwards established anew by Lobachewsky and Bolyai, viz.:

(4) Two straight lines in a plane (even on the hypothesis of the acute
angle) either have a common perpendicular, or must, if produced in one and the
same direction, either intersect once al a finite distance or at least continually
approack one another. (Prop. xxii.)

(3) In a cluster of rays issuin, je Jrom a point there exist always (on the
hypothesis of the acute angle) fwo determinate straight lines which separale the
straight lines which intersect a fixed straight line from those which do not
intersect &f, ending with and including the straight line whick kas a common
perpendicular with the fixed straight line. (Props. XXX., XXXI, XXXIL)

Lambert.

A dissertation by G.S. Kliigel, Conatuum praecipuorum theoriam parallelarum
demonsirandi recensio (1763), contained an examination of some thirty “ demon-
strations” of Post. 5 and is remarkable for its conclusion expressing, apparently
for the first time, dowbt as to its demonstrability and observing that the
certainty which we have in us of the truth of the Euclidean hypothesis is
not the result of a series of rigorous deductions but rather of experimental
observations. It also had the greater merit that it called the attention of
Johann Heinrich Lambert (1728—1777) to the theory of parallels. His
Theory of Parallels was written in 1766 and published after his death by
G. Bernoulli and C. F. Hindenburg; it is reproduced by Engel and Stickel
(op. cit. pp. 152—208).

The third part of Lambert’s tract is devoted to the discussion of the same
three hypotheses as Saccheri’s, the hypothesis of the righ? angle being for
Lambert the firs#, that of the obtuse angle the second, and that of the acute
angle the third, hypothesis; and, with reference to a quadrilateral with #kree
right angles from which Lambert starts (that is, one of the halves into which
the median divides Saccheri’s quadrilateral), the three hypotheses are the
assumptions that the fourth angle is a right angle, an obtuse angle, or an
acute angle respectively.

Lambert much further than Saccheri in the deduction of new
propositions from the second and third hypotheses. The most remarkable is
the following.

The area of a plane triangle, under the second and third hypotheses, is
Proportional to the difference between the sum vof the three angles and two right
angles.
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Thus the numerical expression for the area of a triangle is, under the

third hypothesis

A=k(r—A—B=C) crrerrnronnnnnsinnn(1),
and under the second hypothesis

A=E(A+B+C=7) ccrrrnnanssnsnssinsnsnnnas(2),

where £ is a positive constant.

A remarkable observation is appended (§ 82): “In connexion with this it
seems to be remarkable that the sewnd hypothesis holds if spherical instead of
plane triangles are taken, because in the former also the sum of the angles is
er. than two right angles, and the excess is proportional to the area of the

“It appears still more remarkable that what I here assert of sphen'cal
triangles can be proved independently of the difficulty of parallels.’

This discovery that the second hypothesis is realised on the surface of a
sphere is important in view of the development, later, of the Riemann
hypothesis (1854).

Still more remarkable is the following prophetic sentence : “ 7 am almost
inclined to draw the conclusion that the third kypothesis arises with an imaginary
spherical surface” (cf. Lobachewsky's Géométrie imaginaire, 1837).

No doubt Lambert was confirmed in this by the fact that, in the formula
(2) above, which, for #=7", represents the area of a spherical triangle, if
ra/=1 is substituted for 7, and *=#, we obtain the formula (1).

Legendre.

No account of our present subject would be complete without a full
reference to what is of permanent value in the investigations of Adrien Marie
Legendre (1752—1833) relating to the theory of parallels, which extended over
the space of a generation. His different attempts to prove the Euclidean
hypothesis appeared in the successive editions of his Ekments de Géométrie
from the first (1794) to the twelfth (1823), which last may be said to contain
his last word on the subject. Later, in 1833, he published, in the Mémoires
de I Académie Royale des Sciences, X11. p. 367 sqq., a collection of his different

fs under the title Réflexions sur différentes maniéres de démontrer la théorie
des paralleles. His exposition brought out clearly, as Saccheri had done, and
kept steadily in view, the essential connexion between the theory of parallels
and the sum of the angles of a triangle. In the first edition of the Zlments
the proposition that #ke sum of the angles of a triangle is equal to two right
angles was proved analytically on the basis of the assumption that the choice
of a unit of length does not affect the correctness of the proposition to be
proved, which is of course equivalent to Wallis’ assumption of #ke existence of
similar figures. A similar analytical proof is given in the notes to the twelfth
edition. In his second edition Legendre proved Postulate 5 by means of the
assumption that, given three points not in a straight line, there exists a arcle
passing through all three. In the third edition (1800) he gave the proposition
that 2he sum of the angles of a triangle is not greater than two right angles ;
this proof, which was geometrical, was replaced later by another, the best
known, depending on a construction like that of Euclid 1. 16, the continued
application of which enables any number of successive triangles to be evolved
in which, while the sum of the angles in each remains always equal to the
sum of the angles of the original triangle, one of the angles increases and the
sum of the other two diminishes continually. But Legendre found the proof
of the equally necessary proposition that the sum of the angles of a triangle is
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not less than two right angles to present great difficulties. He first observed
that, as in the case of spherical triangles (in which the sum of the angles is
greater than two right angles) the excess of the sum of the angles over two
right angles is proportional to the area of the triangle, so in the case of
rectilineal triangles, if the sum of the angles is less than two right angles by a
sertain dpfieit, the deficit will be proportional to the area of the triangle.
Hence if, starting from a given triangle, we could construct another triangle
in which the original triangle is contained at least m times, the deficif of this
new triangle will be equal to at least » times that of the original triangle, so
that the sum of the angles of the greater triangle will diminish progressively
as m increases, until it becomes zero or negative: which is absurd. The
whole difficulty was thus reduced to that of the construction of a triangle
containing the given triangle at least twice; but the solution of even this
simple problem requires it to be assumed (or proved) that through a given
point within a given angle less than two-thirds rg/P a right angle we can always
draw a straight line whick shall meet both sides of the angle. 'This is however
really equivalent to Euclid’s Postulate. The proof in the course of which the
necessity for the assumption appeared is as follows.

It is required to prove that the sum of the angles of a triangle cannot be
less than two right angles.

Suppose A is the least of the three angles of a triangle 45C. Apply to
the opposite side BC a triangle DBC, equal to
the triangle 4CB, and such that the angle £
DBC is equal to the angle 4CB, and the angle
DCB to the angle ABC; and draw any siraight B
féﬂc through D cutting AB, AC produced in

, F.

If now the sum of the angles of the triangle § S A
ABC is less than two right angles, being equal -
to 2R -8 say, the sum of the angles of the triangle DBC, equal to th
trinngle ABC, is also 2R -8

Since the sum of the three angles of the remaining triangles DEB, FDC

ively cannot at all events be greafer than two right angles [for Legendre’s
proofs of this see below], the sum of the twelve angles of the four triangles in
the figure cannot be greater than

4R +(2R-8)+ (2R —3), i.e. B8R~ 23

Now the sum of the three angles at each of the points B, C, D is zR.

Subtracting these nine angles, we have the result that the three angles of
the triangle AEF cannot be greater than 2K — 28,

Hence, if the sum of the angles of the triangle 45C is less than two right
angles by §, the sum of the angles of the:larger triangle A£F is less than two
right angles by af Jeas? 28,
dee can continue the construction, making a still larger triangle from AEF,

S0 on.

But, however small 8 is, we can arrive at a multiple 2*8 which shall exceed
any given angle and therefore 2R itself; so that the sum of the three angles
ogs a l.t‘xi-im\gle sufficiently large would be zero or even less than zero: which is
absurd.

Therefore etc.

The difficulty caused by the necessity of making the above-mentioned
assumption made Legendre abandon, in his ninth edition, the method of the
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editions from the third to the eighth and return to Euclid’s method pure and
simple.

But again, in the twelfth, he returned to the plan of constructing any
number of successive triangles such that the sum of the three angles in all of
them remains equal to the sum of the three angles of the original triangle,
but two of the angles of the new triangles become smaller and smaller, while
the third becomes larger and larger ; and this time he claims to prove in one
proposition that the sum of the three angles of the original triangle is egual/ to
two right angles by continuing the construction of new triangles indefinstely
and compressing the two smaller angles of the ultimate triangle into nothing,
while the third angle is made to become a ffaf angle at the same time. The
construction and attempted proof are as follows.

Let ABC be the given triangle ; let A8 be the greatest side and BC the
least ; therefore C is the greatest angle and A the least.

From A draw 4D to the middle point of BC, and produce 4D to C',
making 4C’ equal to 45,

Produce 458 to B, making 4B’ equal to twice AD.

The triangle 4B'C’ is then such that the sum of its three angles is equal
to the sum of the three angles of the triangle 4BC.

For take 4K along 4B equal to 4.0, and join C'X.

Then the triangles 48D, AC'K havc two sides and the included angles
regecﬁvely equal, and are therefore equal in all respects; and C’'X is equal to
BD or DC.

Next, in the triangles B'C'K, 4CD, the angles B'KC', ADC are equal,
being respectively supplementary to the equal angles AKC’, ADZ5; and the
two sides about the equal angles are respectively equal;

therefore the triangles B'C'KX, ACD are equal in all respects.

Thus the angle AC'F’ is the sum of two angles respectively equal to the
angles B, C of the original triangle ; and the angle A4 in the original triangle
is the sum of two angles respectively equal to the angles at 4 and &’ in the
triangle AB'C".

It follows that the sum of the three angles of the new triangle 45'C’ is
equal to the sum of the angles of the triangle 4 BC.

Moreover, the side AC", being equal to 45, and therefore greater than
AC, is greater than B'C’ which is equal to AC.

Hence the angle C'4B'is less than the angle 45'C"; so that the angle
C'AB’ is less than }4, where 4 denotes the angle CAB of the original

iangle.

[It will be observed that the triangle 4.8'C" is really the same triangle as
the triangle 4Z2 obtained by the construction of Eucl. 1. 16, but differently
placed so that the lzlnagest side lies along AE.L

By taking the middle point 2’ of the side B'C" and repeating the same
construction, we obtain a triangle 45"C" such that (1) the sum of its three
angles is equal to the sum of the three angles of A8C, (2) the sum of the
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two angles C"4B", AB'C" is equal to the angle C'4B' in the preceding
triangle, and is therefore less than 14, and (3) the angle C"4.8" is less than
half the angle C'4.5’, and therefore less than }4.

Continuing in this way, we shall obtain a tnangle 4¢ such that the sum of

two angles, those at 4 and 4, is less than %A, and the angle at ¢ is greater

than the corresponding angle in the preceding triangle.
If, Legendre argues, the construction be continued indefinitely so that

:—,A becomes smaller than any assigned angle, the point ¢ ultimately lies on

Ab, and the sum of the three angles of the triangle (which is equal to the sum
of the three angles of the original triangle) becomes identical with the angle
at ¢, which is then a jfaf angle, and therefore equal to two right angles.

This proof was however shown to be unsound (in respect of the final
inference) by J. P. W. Stein in Gergonne’s Annales de Mathématigues xv.,
1824, pp. 77—179

We will now reproduce shortly the substance of the theorems of Legendre
which are of the most permanent value as not depending on a particular
hypothesis as regards parallels,

1. The sum of the three angles of a triangle cannol be greater than fwo
right angles.

This Legendre proved in two ways.

(1) First proof (in the third edition of the Eléments).

Let ABC be the given triangle, and 4 C/ a straight line.

Make CE equal to 4C, the angle DCE equal to the angle BA4C, and DC
equal to 48. Join DE.

Then the triangle DCE is equal to the triangle B4 C in all respects.

If then the sum of the three angles of the triangle ABC is greater than

A [+ E G J
2R, the said sum must be greater than the sum of the angles BCA, BCD,

DCE, which sum is egual to 2R.
Subtracting the equal angles on both sides, we have the result that

the angle 4 BC is greater than the angle BCD.

But the two sides 4.8, BC of the triangle ABC are respectively equal to
the two sides DC, CB of the triangle BCD.

Therefore the base AC is greafer than the base BD (Eucl. 1. 24).

Next, make the triangle FEG (by the same construction) equal in all
respects to the triangle B4C or DCE ; and we prove in the same way that
CE (or AC) is greater than DF.

And, at the same time, BD is equal to DF, because the angles BCD,
DEF are equal.

Continuing the construction of further triangles, however small the
difference between A4C and B.D is, we shall ultimately reach some multiple
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of this difference, represented in the figure by (say) the difference between
the straight line 4/ and the composite line BDFHK, which will be greater
than any assigned length, and greater therefore than the sum of 4.5 and /X,

Hence, on the assumption that the sum of the angles of the triangle ABC
is greater than 2R, the broken line 4 BDFHK] may be less than the straight
line 47: which is impossible.

Therefore etc.

(2) Proof substituted later.

If possible, let 2R + a be the sum of the three angles of the triangle 45C,
of which 4 is not greater than either of the
others. c D

Bisect BC at H, and produce 4H to D,
making HD equal to AH ; join BD. H

Then the triangles 4 HC, DHB are equal in
all respects (1. 4) ; and the angles CAH, ACHare
respectively equal to the angles BDH, DBH. B

It follows that the sum of the angles of the
triangle 48D is equal to the sum of the angles of the original triangle, i.e.
to 2K +a.

And one of the angles DAB, ADB is either equal to or less than half the
angle CAB.

Continuing the same construction with the triangle 4058, we find a third
triangle in which the sum of the angles is still 2% + a, while one of them is
equal to or less than (  CA.B)/4.

Proceeding in this way, we arrive at a triangle in which the sum of the
angles is 2.8 + , and one of them is not greater than ( . CAB)/2".

And, if # is sufficiently large, this will be less than a; in which case we
should have a triangle in which two angles are together greater than two right
angles: which is absurd.

Therefore a is equal to or less than zero.

(It will be noted that in both these proofs, as in Eucl. 1. 16, it is taken for
granted that @ straight line is infinite in length and does not return into itself,
which is not true under the Riemann hypothesis.)

II. On the assumption that the sum of the angles of a triangle is Zess
than two right angles, if a t7iangle is made up of two others, the * deficit” of the
Jormer is equal to the sum of the “ deficits " of the others.

In fact, if the sums of the angles of the component triangles are 2.8 —a,
2R — B respectively, the sum of the angles of the whole triangle is

(2R—a)+(2R—-B)-2R=2R—(a+B).

II1. If the sum of the three angles of a triangle is equal fo two right
angles, the same is true of all triangles obtained by subdividing it by straight
lines drawn from a vertex to meet the opposile side.

Since the sum of the angles of the triangle 4BC is equal to 2R, if the
sum of the angles of the triangle 48D were 2R - a, it
would follow that the sum of the angles of the triangle A
ADC must be 2K + a, which is absurd (by I. above).

IV. If in a triangle the sum of the three angles is
equal fo fwo right angles, a quadrilateral can always be
constructed with four right angles and four equal sides B c
exceeding in length any assigned rectilineal segment.

Let ABC be a triangle in which the sum of the angles is equal to two
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right angles. We can assume ABC to be an sosceles right-angled tria
because we can reduce the case to this by making subdivisions of 4BC by
straight lines through vertices (as in Prop. 111. above).

Taking two equal triangles of this kind and placing their hypotenuses
together, we obtain a quadrilateral with four right angles and four equal
sides.

Putting four of these quadrilaterals together, we obtain a new quadrilateral
of the same kind but with its sides double of those of the first quadrilateral.

After # such operations we have a quadrilateral with four right angles and
four equal sides, each being equal to 2" times the side 45.

The diagonal of this quadrilateral divides it into two equal isosceles right-
angled triangles in each of which the sum of the angles is equal to two right
angles.

Consequently, from the existence ot ore triangle in which the sum of the
three angles is equal to two right angles it follows that there exists an isosceles
right-angled triangle with sides greater than any assigned rectilineal segment
and such that the sum of its three angles is also equal to two right angles.

V. If the sum of the three angles of one triangle is equal to two right
angles, the sum of the three angles of any other triangle is also equal to two
right angles.

It is enough to prove this for a right-angled triangle, since any triangle can
be divided into two right-angled triangles.

Let ABC be any right-angled triangle. o'

If then the sum of the angles of any one /
triangle is equal to two right angles, we can
construct (by the preceding Prop.) an isosceles
right-angled triangle with the same property and
with its perpendicular sides greater than those of
ABC.

Let A'B'C’ be such a triangle, and let it be
applied to 4BC, as in the figure.

Applying then Prop. 1. above, we deduce B
first that the sum of the three angles of the A A B(B)
triangle 48 C is equal to two right angles, and
next, for the same reason, that the sum of the three angles of the original
triangle 4 5C is equal to two right angles.

VI. If in any one friangle the sum of the three angles is less than two
right angles, the sum of the three angles of any other friangle is also less than
two right angles.

This follows from the preceding theorem.

(It will be observed that the last two theorems are included among those
of Saccheri, which contain however in addition the corresponding theorem
touching the case where the sum of the angles is greafer than two right
angles.)

We come now to the bearing of these propositions upon Euclid’s Postulate
5; and the next theorem is

VIL. If the sum of the three angles of a triangle is equal to two right
angles, through any point in a plane there can only be drawn one parallel to a
given straight line,
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For the proof of this we require the following

LEMMA. 12 is always possible, through a point P, to draw a straight line
which shall make, with a given straight line (v), an angle less than any assigned
angile.

Let Q be the foot of the perpendicular from 2 upon 7.

Let a segment QR be taken on 7,
on either side of @, such that QR is P s
equal to PQ.

Join PR, and mark off the segment

RR’' equal to PR ; join PR'.

If w represents the angle QPR or w

the angle QRP, each of the equal Q R R
angles RPR';, RR'P is not greater

than w/2.

Continuing the construction, we obtain, after the requisite number of
operations, a triangle PR,_, &, in which each of the equal angles is equal to
or less than w/2"

Hence we shall arrive at a straight line PR, which, starting from P and
meeting », makes with  an angle as small as we please.

To return now to the Proposition. Draw from P the straight line s
perpendicular to PQ.

Then any straight line drawn from 2 which meets » in R will form equal

les with » and s, since, by hypothesis, the sum of the angles of the triangle

R is equal to two right angles.

And since, by the Lemma, it is always possible to draw through P straight
lines which form with » angles as small as we please, it follows that all the
straight lines through P, except s, will meet . Hence s is the only parallel
to r that can be drawn through 2.

The history of the attempts to prove Postulate 5 or something equivalent
has now been brought down to the parting of the ways. further
developments on lines independent of the Postulate, beginning with
Schweikart (1780—1857), Tdurinus (1794—1874), Gauss (1777—1855),
Lobachewsky (1793—1856), J. Bolyai (1802—1860), Riemann (1826— 1866),
belong to the history of non-Euclidean geometry, which is outside the scope
of this work. I may refer the reader to the full article Sw/la teoria delle
parallele e sulle geometrie non-cuclidee by R. Bonola in Questioni riguardanti
le matemaltiche elementari, 1., of which I have made considerable use in the
above, to the same author’s La geomeliria non-euclidea, Bologna, 1906, to the
first volume of Killing's Einfikrung in die Grundlagen der Geometrie,
Paderborn, 1893, to P. Mansion’s Premiers principes de métagéométrie, and
P. Barbarin’s La gélométrie non-Euclidienne, Paris, 1902, to the historical
summary in Veronese’s Fondamenti di geometria, 1891, p. 565 sqq., and (for
original sources) to Engel and Stickel, Die Theorie der Parallellinien von
Euklid bis auf Gauss, 1895, and Urkunden sur Geschichte der nicht- Euklidischen
Geometrie, 1. (Lobachewsky), 1899, and 1. (Wolfgang und Johann Bolyai).
I will only add that it was Gauss who first expressed a conviction that the
Postulate could never be proved ; he indicated this in reviews in the Gitfin-
gische gelehrte Anseigen, 20 Apr. 1816 and 28 Oct. 1822, and affirmed it ina
letter to Bessel of 27 January, 1829. The actual indemonstrability of the Pos-
tulate was proved by Beltrami (1868) and by Hoiiel (Note sur Limpossibilité de
démontrer par une construction plane le principe de la thévrie des paralleles dit Pos-
tulatum d' Euclide in Battaglini’s Giornale di matematicke, v111., 1870, pp. 84—89).
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Alternatives for Postulate 5.

It may be convenient to collect here a few of the more noteworthy
substitutes which have from time to time been formally suggested or tacitly
assumed.

(1) Through a given point only one parallel can be drawn to a given
siraight line or, Two straight lines which intersect one another cannot both be
parallel to one and the same straight line.

This is commonly known as * Playfair’s Axiom,” but it was of course not
a new discovery. It is distinctly stated in Proclus’ note to Eucl. 1. 31.

(ra) If a straight line intersect one of two parallels, it will intersect the
other also (Proclus).

(18) Straight lines parallel to the same straight line are parallel to one
another.

The forms (1 @) and (1 ) are exactly equivalent to (1).

(2) There exist siraight lines everywhere equidistant from one another
(Posidonius and Geminus); with which may be compared Proclus’ tacit
assumption that Parallels remain, throughout their length, at a finite distance
Jrom one another.

(3) There exists a triangle in which the sum of the three angles is equal to
fwo right angies (Legendre).

(4) Grven any figure, there exists a figure similar to it of any size we please
(Wallis, Carnot, Laplace).

Saccheri points out that it is not necessary to assume so much, and that it
is enough to postulate that there exist two unequal triangles with equal angles.

(5) Through any point within an angle less than two-thirds of a right angle
a straight line can always be drawn which meels both sides of the angle
(Legendre).

With this may be compared the similar axiom of Lorenz (Grundriss der
reinen und angewandten Mathemalik, 1791): Every straight line through a
point within an angle must meet one of the sides of the angle.

(6) Given any three points not in a straight line, there exists a circle passing
through them (Legendre, W. Bolyai).

(7) “Af I could prove that a rectilineal triangle is possible the content of
which is greater than any given area, I am in a position to prove perfectly
rigorously the whole of geometry” (Gauss, in a letter to W, Bolyai, 1799).

Cf. the proposition of Legendre numbered 1v. above, and the axiom of
Worpitzky: There exists no triangle in which every angle is as small as 1we
Please.

(8) JIf in a gquadrilateral three angles are right angles, the fourth angle ts
a right angie also (Clairaut, 1741).

(9) If two straight lines are parallel, they are figures opposite to (or the
reflex of ) one another with respect to the middle points of all thetr transversal
segments (Veronese, Elementi, 1904).

Or, Two parallel straight lines intercept, on every transversal which passes
through the middle point of a segment included between them, another segment
the middle point of whick is the middle point of the first (Ingrami, Elementi,
1904).

Veronese and Ingrami deduce immediately Playfair's Axiom,



