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through the development of some very sophisticated geometric propo-
sitions beginning with just a few basic axioms and postulates.

~ This enchantment with building the complex from the simple was
also evident in the Greeks’ geometric constructions. For them, the rules
of the game required that all constructions be done only with compass
and (unmarked) straightedge. These two fairly unsophisticated tools—
allowing the geometer to produce the most perfect, uniform one-dimen-
sional figure (the straight line) and the most perfect, uniform two-
dimensional figure (the circle)—must have appealed to the Greek sen-
sibilities for order, simplicity, and beauty. Moreover, these constructions
were within reach of the technology of the day in a way that, for instance,
constructing a parabola was not. Perhaps it is accurate to suggest that the
aesthetic appeal of the straight line and circle reinforced the central
position of straightedge and compass as geometric tools while, con-
versely and simultaneously, the physical availability of these tools
- enhanced the role to be played by straight lines and circles in the geom-
_etry of the Greeks. . : licitid

The ancient mathematicians were consequently committed to, and

limited by, the output of these tools. As we shall see, even the seemingly
unsophisticated compass and straightedge can produce, in the hands of
ingenious geometers, a rich and varied set of constructions, from the
bisection of lines and angles, to the drawing of parallels and perpendic-
ulars, to the creation of regular polygons of great beauty. But a consid-
erably more challenging problem in the fifth century B.c. was that of the
quadrature or squaring of a plane figure. To be precise:

0 The quadrature (or squaring) of a plane figure is the construction—
- using only compass and straightedge—of a square having area equal
to that of the original plane figure. If the quadrature of a plane figure

can be accomplished, we say that the figure is gquadrable (or
squarable). .

That the quadrature problem appealed to the Greeks should come as
. No surprise. From a purely practical viewpoint, the determination of the
~area of an irregularly shaped figure is, of course, no easy matter. If such
- afigure could be replaced by an equivalent square, then determining the
-original area would have been reduced to the trivial matter of finding the
area of that square. : :
Undoubtedly the Greeks' fascination with quadrature went far
beyond the practical. For, if successfully accomplished, quadrature
would impose the symmetric regularity of the square onto the asym-
metric irregularity of an arbitrary plane figure. To those who sought a
natural world governed by reason and order, there was much appeal in
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the process of replacing the asymmetric by the symmetric, the imperfect
by the perfect, the irrational by the rational. In this sense, quadrature
represented not only the triumph of human reason, but also the inherent
simplicity and beauty of the universe itself. ! =

- Devising quadratures was thus a particularly fascinating problem for
Greek mathematicians, and they produced clever geometric construc-
tions to that end. As is often the case in mathematics, solutions can be
approached in stages, by first squaring a reasonably “tame” figure and

“_,_. moving from there to the quadrature of more irregular, bizarre ones. The

key initial step in this process is the quadrature of the rectangle, the pro-
cedure for which appears as Proposition 14 of Book II of Euclid’s Ele-
ments, although it was surely known well before Euclid. We begin with |
this. :

STEP 1 Quadrature of the rectangle (Figure Hé

Let BCDE be an arbitrary rectangle. We must construct, with compass
and straightedge only, a square having area equal to that of BCDE. With
the straightedge, extend line BE to the right, and use the compass to
mark off segment EF with length equal to that of ED—that is, EF = ED.
Next, bisect BF at G (an easy compass and straightedge construction),
and with center G and radius BG = FG, describe a semicircle as shown.
Finally, at E, construct line EH perpendicular to BF, where H s the point
of intersection of the perpendicular and the semicircle, and from there
construct square EKLH, i

We now claim that the shaded square having side of length EH—a
figure we have just constructed—has area equal to that of the original
rectangle BCDE: :
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To verify this claim requires a bit of effort. For notational conve-
nience, let @, b, and c¢ be the lengths of segments HG, EG, and EH,
respectively. Since AGEH is a right triangle by construction, the Pythag-
orean theorem gives us a* = »* + ¢ or equivalently @ — b* = ¢%. Now
clearly FG = BG = HG = a, since all are radii of the semicircle. Thus,
EF = FG— EG= a — band BE = BG+ GE = a + b. It follows that

Area (rectangle BCDE) = (base) X (height)

(BE) X (ED)

(BE) X (EF), since we constructed EF = ED
(a + b)(a — b) by the observations above
ad— v ,

¢’ = Area (square EKLH)

Consequently, we have proved that the original rectangular area
equals that of the shaded square which we constructed with compass
and straightedge, and this completes the rectangle’s quadrature.

With this done, the steps toward squaring more irregular regions
come quickly. i

STEP2 Quadrature of the triangle (Figure 1.8)

Given ABCD, construct a perpendicular from D meeting BC at point -

E. Of course, we call DE the triangle’s “altitude” or “height” and know
that the area of the triangle is %(base) X (height) = %¥(BC) X (DE) . If
we bisect DE at Fand construct a rectangle with GH =BCand HJ = EF,
we know that the rectangle’s area is (H)) X (GH) = (EF) X (BC) =
%(DE) X (BC) = area (ABCD). But we then apply Step 1 to construct a
square equal in area to this rectangle, and so the square’s area is also that
of ABCD. This completes the quadrature of the triangle. ,
We next move to the following very general situation.

HIPPOCRATES’ QUADRATURE OF THE LUNE = 15

FIGURE 1.9

STEP3 Quadrature of the polygon .ﬁEmE.m 1.9)

This time we begin with a general polygon, such as the one shown.
By drawing diagonals, we subdivide it into a collection of triangles with
areas B, C, and D, so that the total polygonal areaisB + C + D. -

Now triangles are known to be quadrable by Step 2, so we can con-
struct squares with sides &, ¢, and dand areas B, C, and D (Figure 1.10).
We then construct a right triangle with legs of length 4 and ¢, whose
hypotenuse is of length x, where x* = b* + 2. Next, we construct a right
triangle with legs of length x and & and hypotenuse y, where we have
¥ = x* + d and finally, the shaded square of side y (Figure 1.11).

Combining our facts, we see that A

P=l+d=F+AD+dF=B+C+D

so that the area of the original polygon equals the area of the square
having side y. : ,

This procedure clearly could be adapted to the situation in which the
polygon was divided by its diagonals into four, five, or any number of
triangles. No matter what polygon we are given (see Figure 1.12), we
can subdivide it into a set of triangles, square each one by Step 2, and
use these individual squares and the. Pythagorean theorem to build a

b c ; d
FIGURE 1.10
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c FIGURE 1.11

large square with area equal to that of the polygon. In .mro:, polygons
are quadrable.

By an analogous technique we could likewise square a figure whose

area was the difference between—and not the sum of—two quadrable
areas. That is, suppose we knew that area E was the difference between
areas F and G, and we had already constructed squares of sides fand g
with areas as shown in Figure 1.13. Then we would construct a right
triangle with hypotenuse fand leg g. We let e be the length of the other
leg and construct a square with side e. We then have .

I

FIGURE 1.12
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FIGURE 1.13 .

(
Area (square) = & = f2—~ @ =F— G = E

so that area E is likewise quadrable. ;

With the foregoing techniques, the Greeks of Hippocrates’ day could
square wildly irregular polygons. But this triumph was tempered by the
fact that such figures are rectilinear—that is, their sides, although
numerous and meeting at all sorts of strange angles, are merely straight
lines. Far more challenging was the issue of whether figures with curved
boundaries—the so-called curvilinear figures—were likewise quadra-
ble. Initially, this must have seemed unlikely, for there is no obvious
means to. straighten out curved lines with compass and straightedge. It
must therefore have been quite unexpected when Hippocrates of Chios
succeeded in squaring a curvilinear figure known as a “lune” in the fifth
century B.C.

Great Theorem: The Quadrature of the Lune

A lune is a plane figure bounded by two circular arcs—that is, a crescent.
Hippocrates did not square all such figures but rather a particular lune
he had carefully constructed. (As-will be shown in the Epilogue, this
distinction seemed to be the source of some misunderstanding in later
Greek geometry.) His argument rested upon three preliminary results:

@ The Pythagorean theorem

® An angle inscribed in a semicircle is right,

® The areas of two circles or semicircles are to each other as the
- squares on their diameters.

Area (semicircle 1) _ &
Area (semicircle 2)  D?




