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November 2, 2015

Last week we gave an example of the mayhem that
ensues when you are too casual about manipulat-
ing infinite series. Let me show you an even more
shocking example of what can happen.

We start with the series

S1 = 1− 1 + 1− 1 + 1− 1 + . . .

To assign a numerical value to S1, we notice that if
we cut off the series after an odd number of terms
we get a sum of 1, while if we cut it off after an
even number of terms we get a sum of 0. So the
only sensible thing is to take the average and de-
clare that S1 = 1

2 .

Stop laughing and just stay with me for a moment!

Now define the series

S2 = 1− 2 + 3− 4 + 5− . . .

To evaluate this, let us add two copies of the series,
with the second copy shifted by one, like this:

1 − 2 + 3 − 4 + 5 . . .
1 − 2 + 3 − 4 . . .

The conclusion is that

2S2 = 1− 1 + 1− 1 + 1− · · · = S1 =
1

2
.

Plainly, then, we have that S2 = 1
4 .

We now define our final series like this:

S = 1 + 2 + 3 + 4 + 5 + . . .

Evaluate S − S2 as follows:

S − S2 = (1 + 2 + 3 + 4 + . . . )−
(1− 2 + 3− 4 + . . . )

= (1− 1) + (2− (−2))+

(3− 3) + (4− (−4)) + . . .

= 4 + 8 + 12 + 16 + . . .

= 4(1 + 2 + 3 + 4 + . . . )

= 4S.

Since we know that S2 = 1
4 , we can substitute and

solve for S. We get the equation

S − 1

4
= 4S,

which is easily solved to find that S = − 1
12 .

Did you catch that? We just proved

1 + 2 + 3 + 4 + 5 + · · · = −1

12
.

This result was actually first noticed by Euler. The
sum of infinitely many positive whole numbers is a
negative fraction. Really?

Now, if you think about infinite series the way we
teach you in second-semester calculus, then this
should just seem absurd. These are divergent series
and that’s all there is to it. You can’t just naively
do algebra with divergent series and expect to get a
reasonable result. Done and done.

Maybe. But now consider this: There’s something
called the Riemann zeta-function, which is defined
like this:

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . .

If you think of s as being a positive real number,
then we are solidly in second-semester calculus ter-
ritory. Ye olde ratio test will show you that it con-
verges if s > 1 and will diverge otherwise. With
just a bit more work you can assume s is a com-
plex number, and when you do you will find that
the series only converges when the real part of s is
greater than one.



Now, here’s the thing. There is another, unique,
function which we shall call Z(s). It is defined
and differentiable everywhere in the plane (with the
exception of a single point (s=1) which need not
concern us), and it has this strange property that it
will give you exactly the same answer as ζ(s) if
you only use values of s whose real part is greater
than one. In the math biz we say that Z(s) is an
“analytic continuation” of ζ(s).

If we formally plug s = −1 into zeta, ignoring the
fact that we get a divergent series, then we find that

ζ(−1) = 1 + 2 + 3 + 4 + 5 + . . .

And it turns out that Z(−1) = −1
12 . Really.

Are you convinced now? Have we shown that the
sum of all the positive integers really is −1

12 ? We
should keep in mind that these are infinite sums we
are talking about. That means it is meaningless to
talk about what they actually equal. We can only
describe different conventions for handling them
and judge them based on their usefulness.

Is this where you pounce? Do you reply, “You can
make whatever strange definitions you want, and if
it amuses you to assign a value to the sum of the
integers based on the analytic continuation of the
zeta function then you’re welcome to do so. But
we have certainly left behind any intuition we have
ever had about addition, and your convention is not
useful.”

But this is where the story gets truly bizarre. You
see, sums like 1 + 2 + 3 + . . . arise naturally
in a number of physical applications. Physicists
have discovered that they sometimes get empiri-
cally meaningful results by declaring that series to
be equal to −1

12 . Yes, really. Make of that what you
will.

The moral of the story is this: Sometimes it has
practical value to investigate “obviously” absurd
arguments! Kind of justifies this whole semester
of POTW, don’t you think? Not to mention the fact
that it’s fun. So have a go at this week’s false proof,
and when you think you’ve spotted the error let me
know.

I shall prove that 1 = 0. To do that, I will use
integration by parts to evaluate

∫
1
x dx. Make the

following definitions:

u = 1
x dv = dx

du = − 1
x2 v = x

Recall that the formula for integration by parts is
this: ∫

u dv = uv −
∫
v du.

Applying this formula to the present case gives us:∫
1

x
dx =

(
1

x

)
x−

∫
x

(
−1

x2

)
,

which simplifies to

1 +

∫
1

x
dx.

Therefore, we have discovered that∫
1

x
dx = 1 +

∫
1

x
dx.

Subtracting the integral from both sides leads to the
conclusion that 0 = 1, as claimed.

Submissions are due to Jason Rosenhouse by 5:00
on Friday, November 6. Solutions should be writ-
ten on an official POTW handout. Place your
name, e-mail address, and the section numbers and
professors of any math courses you are taking, in
the upper right corner of the front of the page.
One weekly winner will receive a five-dollar gift
card from Starbucks. Answers will be judged on
the clarity with which they explain the flaw in the
argument. Solutions will be posted at this website,
by the Monday after the problem is due:

http://educ.jmu.edu/∼rosenhjd/POTW/Fall15.html


