
Chapter 1

What is Discrete Mathematics?

To understand what discrete mathematics is and why people regard it as
important, we must begin by understanding what mathematics is intended
to do. To gain such understanding we must first give some thought to the
nature of scientific investigation.

1.1 Science

In ancient times the workings of the world were largely mysterious. De-
spite this, it was perfectly obvious that nature was not entirely capricious
or arbitrary. The Sun rises each morning and sets each night. The moon
is sometimes full and sometimes a crescent, but these phases occur in an
orderly succession. Seasons change in predictable ways. An object dropped
from a moderate height falls to the ground in a straight line, accelerating as
it does so. Seeds that receive copious water and sunlight grow into plants
while those deprived of water and sunlight do not.

At times, however, nature did seem capricious and whimsical. Rain is
essential to any agricultural economy, but the Ancients had not the faintest
idea how to predict its coming. Certainly the Sun rose and set, but occa-
sionally things would grow very dark for no apparent reason (a phenomenon
now known as an eclipse). Though it was known that tiny seeds grew into
plants, the process by which they did so may as well have been magic.

Since caprice and whimsy are attributes of intelligent agents, and since no
Earth-bound intelligences seemed up to the task of creating or maintaining
nature, the Ancients tended to invoke the action of gods to explain what
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was mysterious. Sadly, such explanations suffer from an obvious practical
problem. It is entirely possible that the rains come and eclipses occur because
it amuses the gods to provide rain and eclipses, but nothing that was formerly
confusing becomes comprehensible by such an explanation. Appealing to the
whimsy of the gods is no help when you are trying to determine when to
plant your crops. No disease was ever cured by attributing its cause to the
action of demons. No useful bit of technology has ever been invented by
viewing nature as whimsical and capricious.

Over the years people realized that a more useful sort of explanation was
possible, and it was out of this realization that science was born. The goal
of scientific exploration was to render nature predictable and controllable.
Given that goal, what sorts of things would we need to do to have any chance
of success? Certain things will occur to you immediately. We will need
extensive observations of what actually happens in nature, and we will need
to record the data we collect. Measuring devices of various sorts are necessary
(indeed, the practical difficulties involved in constructing good measuring
devices stymied scientific progress for quite some time). Since it is sometimes
difficult to make good observations “in the wild”, it is necessary to conduct
experiments in a controlled setting.

But there is one further ingredient that may not occur to you so readily.
Let us suppose our goal is to describe the motion of a baseball thrown from
our hand. Everyday experience tells us the ball’s path depends on many
factors. Some are obvious: the angle and velocity at which the ball leaves
your hand, the force of gravity, and the effect of air resistance, for example.
Others are less so, like the rotation of the Earth or the small gravitational pull
of the Moon. If all of these factors must be integrated into our explanation,
there is little hope of producing something useful. It is necessary instead
to focus only on the variables we consider most essential to predicting the
motion of the ball. Consequently, the missing ingredient is abstraction .

1.2 Abstraction

Abstraction (from Latin words meaning “to draw away from”) is the pro-
cess whereby we remove from consideration many of the variables that affect
real-world observations. We focus instead on a small number of remaining
variables in the hope that it is precisely those variables that are most impor-
tant. As a practical matter, perfect precision is not necessary in predicting
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the motion of the ball. We are therefore justified in ignoring those variables
having little effect on the ball’s path.

For example, we know that the gravitational pull of the Moon is so small
that ignoring it is not likely to affect things too badly. Similarly, the error
introduced by ignoring the Earth’s rotation will be negligible. Since a base-
ball is reasonably small and dense the effect of air resistance will be small as
well. In the end we are left only with the angle and velocity at which the ball
leaves our hand, and the force of gravity. So small a number of variables can
be handled without too much difficulty, and there is some hope of producing
a successful theory from this starting point.

Students confronting mathematics for the first time often cite this re-
liance on abstraction as the main stumbling block to learning the subject.
The point is well-taken. Many of the abstractions mathematicians study
seem so divorced from any real-world situation that they can be difficult to
understand. In another sense, however, abstraction is precisely what makes
mathematics possible at all. The alternative to abstraction is a consideration
of every real-world factor that has any effect, no matter how small, on the
question we are studying. As we have seen, that is not practical. In other
words, abstractions are simple; it’s the real world that’s complicated!

Let us return now to our thrown baseball. We are assuming that it leaves
my hand at a known angle and a known velocity, and that after leaving my
hand the only force acting on it is that of gravity. The goal is to determine
how far the ball will travel and the highest point it will reach along the way.
How shall we reach our goal?

One of the first people to study this question in any detail was Isaac
Newton in the seventeenth century. It was his realization that predicting
the path of the baseball depended not on a deep understanding of baseballs,
but rather on a deep understanding of the curves describing the motion of
thrown objects. We can imagine a graph with time along the x-axis and
position along the y-axis. From everyday experience we know that the ball
will initially rise, eventually reach some maximum height, and then begin to
fall. By applying certain basic ideas from physics and mathematics, Newton
realized that the curve that emerges from this trajectory is a parabola (from
Greek words meaning “put alongside” or “thrown right up to”, the idea
being that the parabola resides at the boundary between the ellipse and the
hyperbola in the theory of conic sections. The Greek can also be translated
as “to compare”, and a story that compares a simple situation to a more
complex one is called a parable for that reason). Thus, Newton set about
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discerning the properties of parabolas.
The collection of methods Newton developed for solving this and related

problems are nowadays referred to as calculus.

1.3 Pure vs. Applied Mathematics

The parabola studied by Newton is one example of a continuous function;
“function” because it describes a precise relationship between two variables
(position and time), “continuous” because the curve can be drawn without
removing your pencil from the paper. The continuity of the parabola reflects
the fact that our baseball, in moving from point A to point B, must pass
through every point in between A and B. Thus, if at one moment the ball is
five feet above the ground and at some later moment it is seven feet above
the ground, you can be sure there was some in-between moment when the
ball was six feet above the ground.

There are many everyday quantities that change in a continuous way.
If you are driving at forty miles per hour at noon and ten minutes later
you are driving at sixty miles per hour, then at some point during those
ten minutes your were driving at fifty miles per hour. If you suddenly slam
on your brakes, thereby changing your speed to zero, then you can be sure
that for any number (and by number we do not necessarily mean an integer)
between sixty and zero, there was a moment in time when you were traveling
at exactly that speed.

Temperature has this property as well. In heating water from fifty to
sixty degrees Celsius, you can not avoid a moment at which the water was
at fifty-seven degrees, or any other temperature between fifty and sixty.

If you start with an empty tub and begin filling it with water, you can
not go from no water to ten gallons of water in one shot. You must pass
through every intermediate value, including fractional values, between zero
and ten gallons. Gas pressure has this property as well. No doubt you can
think of other examples.

If all of these real-world quantities can be described by continuous func-
tions, it stands to reason that the methods Newton developed in solving the
baseball problem might find wider applicability. In fact, we might even in-
fer there is something to be gained from studying continuous functions for
their own sake, with the idea that whatever wisdom we gain will inevitably
be applicable to something. This sort of study is sometimes referred to as
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pure mathematics. It is to be contrasted with applied mathematics, in which
abstractions are constructed and studied in the hopes of solving a particu-
lar real-world problem. The line between pure and applied mathematics is
sometimes blurry, but it is real nonetheless.

In emphasizing the potential future usefulness of pure mathematics, I do
not mean to imply that practical utility is the sole reason for doing math-
ematics. Indeed, for most mathematicians the utility of the subject is a
marvelous side benefit, not the primary motivation. The joy of doing math-
ematics is found in the beauty and elegance of the subject. The satisfaction
of encountering the mysterious and, using nothing more formidable than the
power of your own intellect, making it comprehensible, is something that
must be experienced to be properly understood.

In this book our focus will be primarily on pure mathematics. Though
we will discuss many applications along the way, our attitude will be that
certain abstractions have proven to be so useful in so many situations that
they are worth studying for their own sake.

1.4 Discrete Mathematics

We are now ready to answer the question asked in the title of this chapter.
At this point it should be clear that there are many real-world quantities

that change in a continuous manner. But it is equally clear that there are
certain other quantities that do not change in this way. You can purchase
twelve eggs or six eggs or eight eggs, but you can not buy seven and a half
eggs. If their growth is left unchecked, the number of bacteria in a Petri
dish will double in every generation. Thus, in consecutive generations you
will have one, two, four and eight bacteria, without ever having five or six
bacteria. In logic, statements are either true or false with nothing in between.
The electrons of a particular atom reside at certain specific energy levels,
and they can jump from one level to another without ever occupying a level
intermediate between the two.

These sorts of quantities are said to be discrete (from Latin words mean-
ing “kept apart”), and the branch of mathematics devoted to their study is
discrete mathematics. Since discrete structures lack the property of continu-
ity, we can not hope to study them via the techniques of calculus. Instead
we need new techniques and new abstractions. Developing such techniques
is the main goal of this book.
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The study of discrete mathematics enjoyed a renaissance in the mid-
twentieth century. This resulted from the sudden importance of computers
in day-to-day life. You see, most of the things physicists study are continuous
in the sense described earlier. It is for that reason that they use the techniques
of calculus so frequently. Computers, however, brought with them a wealth
of new problems to be solved.

Here is one example: In programming a computer to carry out some task
you begin by devising an algorithm for the computer to follow. By this we
mean a step-by-step description of what you will have the machine do as
it executes your program. It is possible, however, that the algorithm you
devise requires too much time or too much memory to be practical. To
determine whether this is the case, an assessment must be made regarding
the complexity of the algorithm, and the first step in doing this is to count
the number of individual computations the computer is required to carry out.
Counting is a discrete process.

This nicely illustrates the idea that not only do mathematical discover-
ies routinely affect the prevailing culture, but also the culture affects the
mathematics that is studied.

1.5 Doing Mathematics

How, exactly, are we to study these abstractions?
If a group of scientists decides they want to study the physical properties

of baseballs, they are not hindered by a lack of agreement as to what a
baseball is. We all know a baseball when we see one. A scientist need only
point to a ball and say “That is the object we are studying.”

But the whole point of an abstraction is that it is not a real world object.
It is an imaginary construct, one that exists only in the mind of the math-
ematician proposing it. How, then, are two different mathematicians to be
certain they are studying the same abstraction?

Certainly we must begin with a precise definition of the abstraction in
question. This is not always so easy. If I want to define the word “blue”,
I can do so by pointing to a large number of blue objects in the hope that
whoever is listening to me will get the point. Similarly, if I want to define
the word “chair” I can do so by pointing to a large number of chairs.

But mathematical abstractions are not like that. There are no real world
objects for me to point at when stating my definition. Consequently, a math-
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ematical definition must be written with a level of precision that is unfamiliar
from everyday life. Like the abstractions themselves, this level of precision is
a formidable stumbling block for many students of mathematics. For exam-
ple, earlier I said that a continuous function is one whose graph can be drawn
without lifting one’s pencil from the paper. This captures the idea behind
continuity, but as a mathematical definition it is not adequate. There are
many functions whose graphs are not easily drawn. Is there no hope of de-
termining whether they are continuous? And if you are trying to prove that
an abstractly defined function is actually continuous, it is hard to imagine
ending your proof with the statement, “We see, therefore, that the graph of
this function can be drawn without lifting your pencil from the paper.” The
actual definition of continuity, perhaps familiar to you from your calculus
classes, is so complex that mathematics instructors must work very hard to
establish its connection with the more intuitive meaning of the word. But
this level of precision is necessary if we are to reason properly about abstract
objects.

Incidentally, we should not get too carried away with the extent to which
abstractions have no real world existence. While it is true that, technically,
they don’t exist, it is equally true that all of the abstractions we will be con-
cerned with in this book were motivated by common, everyday objects and
ideas. These motivations will be a powerful guide for keeping our bearings
in the mathematical wilderness. For example, a perfect circle is an abstrac-
tion found nowhere on Earth, but there are plenty of objects that come close
enough.

Having defined our objects, the next question is how to determine what
is true about them. When dealing with physical objects I can experiment
with them to my heart’s content. Thus, if I drop my baseballs from a known
height and find that they always reach the ground in the same amount of
time, I can conclude that I have learned something true about the world.
There may be a nagging doubt that the next experiment will be the one that
causes my theory to collapse, and this is why all scientific theories are held
tentatively. But the fact remains that this sort of reasoning has worked very
well in the past. Sadly, experiments of this sort are precisely what we can not
do with mathematical abstractions. Since the abstractions themselves have
no physical existence, there is no way to conduct experiments upon them.

(Here, again, we should not get too carried away. Though we can not
perform experiments in the same sense that scientists perform experiments,
we can do the next best thing. Specifically, we can work out specific examples
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in the hopes of discerning a general pattern. This sort of experimentation
is a standard part of mathematical reasoning, and we will be doing a great
deal of it throughout this book.)

If I can’t determine the truth about my abstractions by experimentation
then I will have to try a different approach. The information contained in
my definitions is all I have to work with when drawing conclusions about my
abstractions. What is needed, therefore, are some basic principles that will
tell me how to draw correct inferences from the limited information I have.
The branch of mathematics (or philosophy, depending on your perspective)
that provides such principles is known as logic, and that will be the subject
of the next chapter. Having decided on some rules of inference, we can then
address the question of what constitutes a proof in mathematics. That will
be the subjects of chapters three and four.


