
Chapter 5

Counting

Now that we have armed ourselves with the requisite logical machinery, we
can go on to consider some of those useful abstractions we mentioned in
chapter one. Since the first thing most people think of upon hearing the
word “mathematics” are the counting numbers (positive integers), we will
devote this chapter to the subject of counting.

5.1 Sets

As a first attempt at imposing order on nature’s chaos, let us note that
certain real-world objects can be grouped together in a natural way. Apples
are easily distinguished from oranges, and dogs are quite different from cats.
As I look around my office I notice that there are some red objects, some
green objects and some blue objects. The books on my shelf are distinct from
the books on the shelf of my neighbor’s office, and I can make this distinction
by referring to “My books” vs. “His books.”

Mathematicians capture the idea of grouping similar objects together to
distinguish them from other objects in the concept of a set . By a set we
mean any collection of objects. We can talk about the set of all books in my
office or the set of all things that are red or any other grouping of objects
you care to imagine. In a mathematical context we often talk about sets of
numbers. Thus, I can discuss the set of positive integers, or the set of even
integers, or perhaps the set of rational numbers.

I could also talk about smaller sets. In that case, rather than write down
a one-sentence description of the set I have in mind, as I did in the previous
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paragraph, I can simply list all the elements of the set. For example, if I am
thinking of the set containing all of the positive integers that are no larger
than five, I could write down my set like this:

{1, 2, 3, 4, 5}.

When writing down a set, it is customary to place the items in the set within
braces, and to separate those items with commas. It is also customary to
refer to the items in a set as the elements of that set. Thus, the integers
between one and five inclusive are the elements of the set above.

So we have now imposed a small degree of order upon the numerous
objects we confront in day-to-day life. But I am sure that you have noticed
by now that some objects answer to more than one description. Perhaps I
have the set of all apples over here and the set of all things that are red over

there. These two sets are not entirely separate. Apples come in a variety of
colors and one of those colors is red. Such apples reside comfortably in both
sets.

This is a common phenomenon. I can talk about the set of all even
numbers and the set of all perfect squares, but the fact remains that some
numbers (like 4, 16 and 36) answer to both descriptions (they are even on the
one hand, and perfect squares on the other). Or I can look at a more mundane
example. Let A be the set {1, 2, 3, 4, 5} and let B be the set {3, 5, 7, 9, 11}.
Then a quick inspection reveals that the numbers 3 and 5 are found in both.

From this we conclude that it is possible for two sets to overlap. This
overlap is referred to as the intersection of the two sets. Since “intersec-
tion” is a long, clumsy word, it is customary to abbreviate it with the symbol
“∩”. In the paragraph above, we could say

A ∩ B = {3, 5}.

The expression on the left hand side here is read “A intersect B”. We could
also say that the intersection of the set of all apples with the set of all red
things is the set of all red apples. Please notice that the intersection of two
sets is, itself, a set. Sets that have no elements in common (for example,
the set of all even numbers and the set of all odd numbers), are said to be
disjoint .

This raises an interesting dilemma. As just noted, the intersection of two
sets is itself a set. But what happens if the sets in question have no elements
in common. For example, if E is the set of even numbers and O is the set of
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odd numbers, then E ∩ O contains no elements (since there are no numbers
that are simultaneously even and odd). It follows that we need a name for
the set that has no elements. Since such a set can plausibly be said to be
empty, we refer to the set that contains no elements as the empty set . This
set is denoted by the symbol “∅.” Thus, we would say

E ∩ O = ∅.

We have now identified, for any two given sets A and B, a smaller set
containing precisely those elements common to both A and B. But we could
also identify a larger set containing everything that appears either in A or
B or both. This larger set is referred to as the union of A and B, and we
write A ∪ B. For example, using the notation from the previous paragraph,
we can say that E ∪ O is the set of all integers, since every integer is either
even or odd. Or, to consider a more mundane example, if we have

A = {1, 2, 3, 4, 5} and B = {3, 5, 7, 9, 11},

then we can say that

A ∩ B = {3, 5} and A ∪ B = {1, 2, 3, 4, 5, 7, 9, 11}.

Notice that the union of two sets is another set, and that we do not list the
elements 3 and 5 twice, even though they appear in both sets.

Forming the union of two sets has some obvious real-world counterparts.
In an elementary school it is sometimes convenient to talk about the set of
third graders, the set of fourth graders and the set of fifth graders. At other
times I may want to take the union of these sets and talk simply about the
set of all students at the school. Or I can view each particular kind of apple
(Red Delicious, McIntosh, Granny Smith, and so on) as its own set, and then
take their union to obtain the set of all apples. No doubt you can think of
other examples.

You have probably noticed that it is possible to have two sets such that
one of them lies entirely inside the other. For example, the set of all even
integers sits inside the set of all integers. The set of all integers, in turn,
sits entirely inside the set of all rational numbers (since every integer is a
rational number, but there are rational numbers that are not integers). Non-
mathematical examples are possible as well. The set of all Golden Delicious
apples sits inside the set of all apples, for example. The set of all math
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majors taking my course lies entirely inside the set of all math majors at my
university.

Since the idea of one set residing entirely inside another is dreadfully
imprecise, mathematicians talk instead about one set being a subset of
another. We say A is a subset of B if all of the elements of A are also
elements of B. For example, we could say the set of even numbers is a subset
of the set of all integers. We could write this more succinctly as A ⊆ B, the
symbol “⊆” being an abbreviation for “is a subset of”.

There are many other sorts of things you can do with sets, but perhaps
it is time to stop and ponder why we are bothering at all. Why have we de-
veloped this elaborate formalism for something as simple as grouping similar
objects together? Well, in solving the various counting problems that will
form the basis for the remainder of this chapter, we do not want to over-
specialize by considering concrete examples of sets. By this I mean we do
not want to consider sets of books, or sets of people, or sets of numbers, for
example, because doing so puts unnecessary restrictions on our reasoning.
By considering sets in the abstract we can be sure that the principles we
develop will be applicable to any kinds of sets we wind up encountering.

This principle will become clearer as we proceed with the chapter.

5.2 Two Classics

Counting is the art of putting the elements of a given set into one-one corre-
spondence with the elements of a set whose size is known. Sometimes this is
easily done. If you have before you a basket of apples and wish to determine
how many there are, you can simply remove the apples one at a time, ticking
off the numbers one, two, three as you do so. Unless we are confronted with
a truly enormous basket, this is a very practical procedure. Saying there are
x apples in the basket is equivalent to saying the apples in the basket can be
placed into one-one correspondence with the set {1, 2, 3, . . . , x}.

But what if our interest lies not in physical objects, but rather in the
elements of some abstractly defined set? For example, suppose our goal is to
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count the number of squares, of any size, in an 8 × 8 checkerboard:

8 � � � � � � � �

7 � � � � � � � �

6 � � � � � � � �

5 � � � � � � � �

4 � � � � � � � �

3 � � � � � � � �

2 � � � � � � � �

1 � � � � � � � �

a b c d e f g h

We can see at a glance there are sixty-four small squares. But what about
the squares of other sizes, like the 2 × 2, 3 × 3, and 4 × 4 squares below:

� �

� �

� � �

� � �

� � �

� � � �

� � � �

� � � �

� � � �

It would seem that tackling the problem all at once is rather too complicated.
There are so many squares to be counted that, lacking some orderly procedure
for listing them all, we will quickly lose track of which we have counted and
which we have not counted. What is needed is some way of breaking the
problem down into more manageable chunks.

What if instead of counting all of the numbers at once, we instead restrict
our attention to those squares of a particular size? We have already seen there
are sixty-four small, 1 × 1 squares. How many 2 × 2 squares are there?

To answer that we might notice that every 2 × 2 square in the diagram
has exactly one lower left corner, and any 1 × 1 square can be the lower left
corner of only one 2×2 square. It follows that we can determine the number
of 2 × 2 squares by counting instead the number of 1 × 1 squares that can
serve as a lower left corner. Inspecting the diagram above reveals that any
square other than those in row eight or column h can serve as such a corner.
It follows there are 49 squares of dimension 2 × 2 in the diagram.

Imitating this logic for the case of 3 × 3 squares leads to the observation
that any square except for those in rows seven or eight, or those in columns
g and h, can serve as the lower left corner of a 3 × 3 square. Consequently,
there are 36 such squares. Perhaps the pattern is now clear? The number of
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squares of size n×n, where n is some integer between one and eight inclusive,
is given by (9−n)2. For example, the number of 3×3 squares is (9−3)2 = 36.
It follows that the total number of squares in the diagram is given by

8
∑

k=1

(9 − k)2 =
8

∑

k=1

k2 = 204.

Notice the manner in which we rewrote the sum after the first equal sign
above. As k goes from one to eight, the quantity (9 − k) counts backward
from its first term, which is eight, to its last term, which is one. From this we
see that the quantities k and (9− k) cycle through the same list of numbers.

The nice thing about this method is that it generalizes easily to checker-
boards of any arbitrary size. If we have a checkerboard of size d × d, then
the total number of squares it contains is given by

d
∑

k=1

(d + 1 − k)2 =

d
∑

k=1

k2 =
d(d + 1)(2d + 1)

6
,

the last equality having been proved in the previous chapter.

This is a classic sort of counting problem. By judicious application of our
intellect we were able to take a chaotic jumble of squares and impose some
order upon them.

For our second example, consider a single-elimination tennis tournament
with 1024 = 210 players. By single-elimination we mean that as soon as a
player loses a match he is eliminated from the tournament. The tournament
continues until only one player remains. The question is: how many matches
are played in the tournament?

Brute force seems workable in this case. We notice that in the first round
the 1024 players will engage in 512 matches. In the next round the remaining
512 players will engage in 256 matches. The next round will feature 128
matches, then 64 in the round after that, and so on. Then it is a simple
computation to show that the total number of matches is

512 + 256 + 128 + . . . + 4 + 2 + 1 = 1023.

We could even generalize this process to the case where instead of having
210 players, we have 2n players instead. We would then observe that the
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number of matches in the k-th round of such a tournament would feature
2n−k matches. Then the total number of matches would be

n−1
∑

i=0

2i = 2n − 1.

This last formula could be proved by induction.
Clever as all this is, it simply does not work when the number of players in

the tournament is not a power of two. In this case certain rounds will feature
an odd number of players, and we must assume the tournament organizers
have worked out some system of byes to handle these rounds. But we can
still ask how many matches will be played before a winner emerges.

Initially the situation appears hopeless. Since we know nothing about the
number of players we have to begin with, there is no hope of using any sort
of computational approach.

But perhaps all is not yet lost. What if instead of counting the number
of matches, we counted instead some other set that had a size equal to the
number of matches? There is such a set, which you will realize for yourself
as soon as you consider that every match produces one winner and one loser.
Since there is only one winner at the end of the tournament, there must be
x − 1 losers. And since every match produces only one loser, we find there
must have been x−1 matches played. This is precisely what we found in the
special case where the number of players was a power of two.

5.3 Basic Counting Principles

There are many problems in mathematics that can be solved merely by im-
plementing some appropriate algorithm. No doubt you could add together
two numbers when called upon to do so, and you would only have to work
slightly harder to add two fractions. These problems are simple because there
is a very clear procedure for solving them

Not so with counting problems. Indeed, not so with any mathematical
problem worth spending effort to solve. This does not mean we must begin
from scratch with each new problem to come down the pike, however. When
a plumber arrives to fix your sink, he comes prepared with the standard tools
of his trade. He may not know specifically which tools he will need to solve
your problem, but he has a good sense of what tools have been most helpful
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in the past. Furthermore, his experience enables him to determine quickly
which tool is likely to be useful in his new situation.

So it is with mathematics. When approaching a new problem a math-
ematician does not know ahead of time what approach will work. But he
carries with him a collection of techniques and ideas that have often been
useful in the past. It is part of the training of any mathematician to solve
many sorts of problems, and the experience gained thereby allows him to
discern very quickly what tools to use in new situations.

Since we can not write down a general procedure for solving counting
problems, we will do the next best thing. We will come up with basic princi-
ples to guide our investigations into these sorts of problems. We have already
encountered two:

1. One way to count the elements of a large set is to partition it into
smaller sets whose elements are easier to count.

2. You can count the number of elements in a set by placing it into one-one
correspondence with a set whose size is known.

In item one above, the term “partition” indicates that every element in
the larger set is found in exactly one of the smaller sets. It was this fact that
justified our concluding step, wherein we summed the number of elements
of the smaller sets to find the size of the large set. Any elements residing in
more than one of the smaller sets would have otherwise been overcounted in
our sum, you see.

If we so choose we can view item one from the reverse perspective. Rather
than partition a large set into smaller, disjoint sets, what if we start with
several disjoint sets and seek the number of elements in their union? It will
come as no surprise that the logic does not change, leading us to our third
principle:

3. If S1, S2, . . . , Sn are disjoint sets, then

∣

∣

∣

∣

n
⋃

i=1

Si

∣

∣

∣

∣

=
n

∑

i=1

∣

∣Si

∣

∣.

This is a concise way of saying that the number of elements in the union
of disjoint sets is found by adding the number of elements in each set taken
individually.
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Let us conclude this section with one further example. Suppose your goal
is to count the number of dots in this rectangular array:

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

You could achieve your goal by counting every dot, one by one, moving your
finger across each row and ticking off the numbers as you do so. This method
is unappealing, since aside from being terrifically dull it is also prone to error;
your finger is no doubt thicker than the individual dots, making it difficult
to keep your place. A far more practical method begins with the observation
that there are seven dots along the bottom row and four dots in the first
column. It ends by noting that 7 × 4 = 28.

Now imagine that along the bottom row we placed the letters a through i,
while along the first column we placed the numbers 1 through 4. In that case
we could identify each dot in the array with a pair (x, y) where x represents
one of the letters a through i, and y represents one of the numbers between
1 and 4. Therefore, we conclude there are 28 such pairs.

This fact can be expressed more generally. If A and B are finite sets,
then we can define their Cartesian product to be the set whose elements
are the pairs (a, b), where a is an arbitrary element of A and b is likewise
arbitrarily chosen from B. The Cartesian product of A and B is denoted
A × B, read “A cross B”. We can imagine placing the elements of A along
the bottom of a rectangular array and the elements of B along the left most
column of the same array. Having done that, every element of A × B will
be associated with exactly one dot in the array. This leads us to our fourth
basic counting principle:

4. Let A and B be sets. Assume n(A) = x and n(B) = y. Then

n(A × B) = xy

5.4 The Pigeonhole Principle

Since we are presently discussing basic principles, we should also mention
that if you have more pigeons than pigeonholes then some pigeonhole contains
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more than one pigeon. This self-evident truth is known as the pigeonhole
principle. It is also known more grandiosely as the Dirichlet principle, after
the eighteenth century French mathematician who first coined it. We can
express it more formally by saying that if n objects must be distributed
among fewer than n spots, then some spot receives more than one object.

If more precision is required we might say that if n and k are positive
integers such that nk + 1 objects must be distributed among k spots, then
some spot receives are least n + 1 objects. For example, given eleven objects
and five spots, some spot receives at least three objects. In this case, n = 2
and k = 5.

An amusing illustration of the usefulness of this principle is offered by
the following problem: let us suppose we are given six points in the plane,
no three of which are collinear. Suppose that all pairs of points are joined
by line segments, and that each of these line segments is colored either red
or green. Is it necessarily the case that some three of the six points form the
vertices of a triangle all of whose sides are the same color?

To solve this, let P1, . . . , P6 be the six points. Then the pigeonhole prin-
ciple implies that three of the five segments having P1 as an endpoint must
have the same color (we have five segments but only two colors, you see).
Let us assume that color is red, and let us further assume that P2, P3 and
P4 are the second endpoints of these segments. Consider the triangle whose
vertices are these three points. If this triangle has all green sides, then we
have found a triangle of the type we seek. So let us suppose that one of the
triangle’s sides is red, say, the one joining P2 to P3. In that case, the triangle
joining the points P1, P2 and P3 is the triangle we seek. Either way there is
a triangle all of whose sides are the same color. Consequently, the answer to
our question is yes.

5.5 Permutations and Combinations

If a certain ice-cream parlor offers thirty-one flavors, each of which can come
in one of four different types of cone, then there are 31 × 4 = 124 different
items you can order from them. This is easily seen by noting that for each
of the thirty-one flavors there are four serving vessels from which to choose.
Alternatively, we might define F to be the set of available flavors and V to
be the available serving vessels. Then each item you might order is given by
an ordered pair (f, v), where f is a flavor and v is a serving vessel. It follows
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that the number of items available at the ice cream parlor is equal to the
number of elements in F × V . Since F contains thirty-one elements and V

contains four elements, we again arrive at 124 different items.
What if I now tell you there are ten different toppings to choose from as

well? No doubt you would reason that for each of my 124 flavor plus cone
combinations, I have ten choices of topping. This leads to 1, 240 possibilities
in all.

Though we are using nothing more sophisticated than the definition of
multiplication, a surprising number of counting problems can be solved by
this sort of reasoning. The idea is that if you want to count the number
of ways of carrying out some multi-step process, it is helpful to count the
number of ways of carrying-out each step individually. In the example above,
we sought the number of ways of ordering an ice cream cone from our hypo-
thetical parlor. Ordering such a cone was a three step process: first specify
a flavor, then specify a type of cone, and finish by specifying a topping.

Let us express this principle in a more general setting. Suppose we are
carrying out some process that has k steps. Further suppose there are p1

different ways of carrying out the first step, p2 ways of carrying out the
second step, and so on through pk possibilities for the k-th step. Then there
are p1p2 . . . pk ways of carrying out the entire process. This can be proved by
induction, but it can also be seen by generalizing the reasoning that went into
showing that the number of elements in the Cartesian product of two sets is
given by the product of the number of elements in each set individually.

As an example, let us suppose we desire to count the number of different
ways in which the integers from 1 through 9 can be ordered. We imagine
that we have nine slots before us, each to be filled with one of our integers.
That means we can place any of the nine integers in our first slot. Once we
have filled that slot, there will be eight integers and eight slots remaining.
It follows that the second slot can be filled in any of eight different ways.
Continuing in this way, we find there will be seven ways to fill the third slot,
six ways to fill the fourth slot, and so on until we have only a single possibility
for the final slot. We conclude that the number we seek is:

9 × 8 × . . . × 2 × 1 = 9!

The abbreviation 9! is read “Nine factorial” and indicates that we are to
multiply all the integers between one and nine inclusive. In general, the
number of ways of ordering k distinct objects is k! (read “k factorial” and
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indicating that we are to multiply all of the numbers between one and k

together).

What if we have n objects to choose from, but we only need to fill r slots,
where r < n? Our reasoning would not change at all, save for the fact that
now we will run out of slots before we run out of objects. The number we
seek is:

n × (n − 1) × . . . × (n − r + 1) =
n!

(n − r)!
.

As another example of this line of reasoning, suppose that the license
plates in a certain state consist of three letters followed by three digits. How
many distinct license plates can the state make? To solve this, we observe
there are six slots to fill. Each of the three letter slots can be filled in
twenty-six ways, while each of the number slots can be filled in ten ways. We
conclude that the answer is:

26 × 26 × 26 × 10 × 10 × 10 = (263)(103) = 17, 576, 000.

Now let us add a new wrinkle. In this example, two license plates differing
only in the order in which the letters and numbers are arranged are nonethe-
less viewed as different license plates. In other words, the plate ABC 123
is considered to be different from CBA 231, and both of these are different
from ACB 132.

Orderings of this sort, in which the order of the chosen symbols mat-
ters, are known as permutations, from Latin words referring to changes
or movement. They are to be contrasted with combinations, where our
interest lies solely in the chosen objects themselves, and not in the order in
which we choose them.

To make this distinction clear, suppose we are to count the number of
ways we might choose three numbers out of the ten digits from 0 to 9. We
might reason that since we are choosing three objects from a total of ten
possibilities, the formula we derived above tells us the answer is

10!

(10 − 3)!
= 10 × 9 × 8 = 720.

By arguing in this way, we are assuming that the order in which we choose
the three numbers ought to affect our count. Thus, for example, we have
been treating the sequences (1, 3, 4), (4, 3, 1) and (3, 4, 1) as being different.
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But what happens if we ignore the order in which we choose the numbers?
In that case the three sequences above would be treated as identical. It
follows that our old formula overcounts the number we seek. What to do?

Well, to what extent does our old formula overcount the number we seek?
We find that once we have chosen any three numbers, they can be ordered in
six different ways. This follows from our general observation that k distinct
objects can be ordered in k! different ways. If the three numbers we had
chosen were 1, 3 and 4, then in addition to the three orderings given above
we also have

(1, 4, 3) (3, 1, 4) (4, 1, 3),

for a total of six. It follows that our formula counts each sequence six times.
Therefore, the number we calculate from our formula will be precisely six
times greater than the number we seek. We can compensate for this by
dividing our answer by six, giving us 720

6
= 120.

More generally, let us suppose we are choosing r objects out of n possibil-
ities, where we do not care about the order in which we choose the objects.
We will denote this number by the symbol

(

n

r

)

(read “n choose r”). There

are
n!

(n − r)!
ways of choosing the r objects if the order is considered to be

important. Having selected the r objects, we find they can be ordered in r!
different ways. It follows that

(

n

r

)

=
n!

(n − r)! r!
.

For example, suppose we have fifteen people. Our task is to choose five
of those people to be part of a committee. In how many ways can we make
the choice? Since the order in which our five people are chosen makes no
difference to the composition of the resulting committee, we find there are

(

15

5

)

=
15!

10! 5!
=

15 × 14 × 13 × 12 × 11

5 × 4 × 3 × 2
= 273

possible committees.
As another example, in a game of bridge you are dealt thirteen cards.

The order in which the cards are dealt to you makes no difference. Since
there are 52 cards in a deck, we find there are

(

52

13

)

=
52!

39! 13!

possible bridge hands, which is a large number indeed.
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5.6 Poker Hands

Let us apply some of our new-found wisdom to the vexing problem of dis-
cerning the proper hierarchy of poker hands.

In poker, each player receives five cards, referred to as his hand. These
hands are ranked hierarchically so that given any pair of hands, one of them
can be said to be stronger than the other.

Certain types of hands are of particular interest, and among these are
the flush, in which all five cards are of the same suit; the straight, in which
the numerical values of the five cards comprise five consecutive numbers
(counting the jack as eleven, the queen as twelve, and the king as thirteen,
with aces acting either as low card or high card); and the full house, in which
three of the cards are of one denomination, while the remaining two cards
are of some other denomination. The strength of a poker hand is inversely
proportional to the probability of obtaining it; the more improbable the hand
the higher ranked it is.

Many novice players find it difficult to recall the proper ordering of the
flush, straight and full house, so we settle that question now. Doing so will
require us to combine several different counting techniques.

Let us begin with the number of ways of obtaining a flush. The difficulty
here lies in finding an orderly way of counting all the possible flushes. This
is reminiscent of the checkerboard problem we considered earlier, and that
problem was solved by partitioning the set to be counted into disjoint sets
whose size was more easily determined.

We can do the same thing here. Since counting all of the flushes is too
complicated, let us instead count all of the flushes of a particular suit, say
diamonds. We then need to choose five specific diamonds out of the thirteen
available. Since the order in which the cards are listed does not change the
hand, we find there are

(

13

5

)

ways of choosing the five cards. And since there
are four possible suits, the answer is:

4

(

13

5

)

=
(4)(13!)

8!5!
= 5, 148.

What about the straight? Here we might follow the example of the tennis
tournament problem considered earlier. Rather than count the number of
straights directly, we notice that the every straight has exactly one low card.
Once we have chosen the value of the low card, the values of the remaining
four cards are determined. We observe that any card from ace up to ten
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can serve as the low card of a straight, while cards higher than ten can not.
Thus, the low card in the straight can have any of ten possible values.

Let us suppose that we have chosen three to be the low card. Having
made that choice, we see that the remaining cards must be a four, a five, a
six and a seven. Therefore, we have five slots to fill in our hand and four
choices for each slot (since there are four cards in the deck of any given value).
It follows that there are 45 straights having three as the smallest card. And
since we had ten choices for what the lowest card would be, we find that the
number of possible straights is

(10)(45) = 10, 240.

There are nearly twice as many straights as there are flushes.
What about the full house? The key here is to break the problem down

into more manageable steps. In a full house all five cards come from just
two values. Since there are 13 possible values, I might begin by observing
that there are

(

13

2

)

ways of choosing two of them. However, given any pair of
values, there are two sorts of full houses that can be made out of them. For
example, if I wanted to have a full house with kings and sixes, I could have
either three kings and two sixes, or two kings and three sixes.

The next observation is that, having chosen my values, I must now choose
three representatives of one of the values and two representatives of the other
value. There will be

(

4

3

)

and
(

4

2

)

ways of making those choices respectively.
Putting everything together gives us:

2

(

13

2

)(

4

3

)(

4

2

)

= (2)(78)(4)(6) = 3, 744

possible full houses.
That was sufficiently complicated that it may help to look at it another

way. We have constructed our full houses via a three-step process. In the
first step, we chose the two values to be represented in the full house, taking
into consideration the fact that for any two values there were two different
full houses to be built upon them. There are 2

(

13

2

)

ways of completing step
one. In step two we chose three representatives of one of the values. There
are

(

4

3

)

ways of completing step two. Step three involved choosing two repre-

sentatives of the second value. There are
(

4

2

)

ways of completing step three.
Since we know the number of ways of carrying out each step in the process
we can simply multiply them together to find the answer.
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As a result, we see that a flush is stronger than a straight, and a full
house is stronger than a flush.

The numbers
(

n

k

)

are fascinating in their own right, and they will figure
prominently in chapter six.

5.7 Problem Solving Skills

5.7.1 Permutation Variations

Your ability to solve counting problems of the sort considered in this chapter
will depend as much on your persistence and ingenuity as it will on your
ability to master specific techniques. With that in mind, let us consider
some variations on the sorts of problems considered above.

How many ways are there of arranging the letters in the word GOAT?
This is identical to the problem of counting the number of ways of arranging
the digits one through four. We have already seen there are 4! = 24 such
orderings. For completeness, let us list the twenty-four ways of ordering the
four letters in GOAT:

GOAT, GOTA, GTOA, GTAO, GAOT, GATO
OGTA, OGAT, OTGA, OTAG, OATG, OAGT
TAGO, TAOG, TOGA, TOAG, TGAO, TGOA
ATGO, ATOG, AOGT, AOTG, AGTO, AGOT

Now let us try a harder problem. How many ways are there of arrang-
ing the letters in the word MATHEMATICS? At first this may seem to be
identical to the previous problem. If it were, we would observe that MATH-
EMATICS is an eleven letter word and conclude there are 11! different order-
ings. This would be the correct answer if the word contained eleven different
letters

But since the letters M, A and T all appear twice in the word “math-
ematics”, this would be an overcount. For example, let us distinguish the
occurrences of the letter M by using a capital letter for its first occurrence
and a lower case letter for its second. In offering 11! as the correct answer we
are effectively treating the orderings MATHEmATICS and mATHEMATICS
as being different. In reality, however, the two occurrences of the letter M
are identical. So we will incorrectly count this particular ordering twice.



5.7. PROBLEM SOLVING SKILLS 91

How should we handle this? We might begin by asking how badly we
overcounted in suggesting 11! as the correct answer. To answer this, we con-
tinue with the reasoning from the previous paragraph. Given any particular
ordering of the eleven letters, we can obtain an identical ordering simply
be reversing the capital and lower-case M’s. A proper count would treat
these orderings as identical, whereas our 11! treats them as different. We can
compensate for this by dividing the 11! by two.

From there the rest follows easily. Since the positions of the two A’s can
be switched without producing a new ordering, we conclude that we must
again divide by two to compensate. Finally, we divide by two again to take
into consideration our overcounting of the T’s. When we are done, we find
the answer is 11!

8
.

Actually, there was another way to approach this problem. This time we
begin by noticing that we have eleven slots to fill. We must choose two of
those slots to contain the M’s, but we do not care about the order in which
these two slots are chosen. Consequently, there are

(

11

2

)

ways to choose the
locations of the two M’s. Having made that choice, there are now nine slots
remaining to be filled. Two of those must be given to the A’s, and again we
do not care about the order in which those two slots are chosen. It follows
that there are

(

9

2

)

ways of making that choice. We repeat the process one

more time for the T’s, and find that there are
(

7

2

)

ways of making that choice.

At this point we have filled six of the eleven slots. The remaining slots
must be filled with our remaining five letters. These letters are all distinct
(we have one each of H, E, I, C and S). Therefore, we have 5! ways of ordering
them. Putting everything together, we have taken the problem of ordering
the letters in MATHEMATICS and have broken it down into a four-step
process. It follows that the total number of orderings is then given by:

(

11

2

)(

9

2

)(

7

2

)

5!

By doing a little algebra we obtain:

(

11!

2! 9!

) (

9!

2! 7!

) (

7!

2! 5!

)

5! =
11!

2! 2! 2!
=

11!

8
,

which is is exactly the answer we obtained before.



92 CHAPTER 5. COUNTING

5.7.2 Binomial Coefficients

Numbers of the form
(

n

k

)

are known as binomial coefficients, for reasons
that will be made clear in the next chapter. A surprising number of problems
can be solved simply by remembering that

(

n

k

)

counts the number of ways of
choosing k objects out of n possibilities, where we do not care about the order
in which we choose the objects. For example, suppose we want to compute
the sum

n
∑

k=0

(

n

k

)

=

(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ . . . +

(

n

n − 1

)

+

(

n

n

)

.

Viewed as an abstract computational problem it is hard to see where to begin.
But what if we approach this as a counting problem? In that case we can
reinterpret our sum as follows: Suppose I begin with n objects. Then

(

n

k

)

counts the number of ways of selecting k elements from the n possibilities.
This is equivalent to counting the number of subsets of size k that can be
formed from a set with n elements. Furthermore, the size of any subset of
a set of size n will have between zero and n elements in it. By reasoning in
this way, we see that the sum above is counting the total number of subsets
possessed by a set with n elements.

In the previous chapter we showed that a set of size n has 2n subsets. It
follows that our sum is equal to 2n. For example, suppose that n = 3. Then
we observe that

(

3

0

)

= 1

(

3

1

)

= 3

(

3

2

)

= 3

(

3

3

)

= 1

and
1 + 3 + 3 + 1 = 8 = 23.

Since the argument we provided for solving this problem depended on recog-
nizing that our sum was counting a familiar object (the number of subsets
of a given set in this case), we refer to it as a counting argument .

As another example, suppose we wish to prove that if n, k and r are
positive integers with n > k > r then

(

n

k

)(

k

r

)

=

(

n

r

)(

n − r

k − r

)

.

Certainly this can be done algebraically. By this I mean that we could
replace the four binomial coefficients with the appropriate fractions and, by
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a judicious application of algebra, show that the two expressions really are
equal.

That would establish the correctness of the equation, but it is not a very
enlightening proof. By this I mean that it provides little insight into why
the equation is true. Mathematical objects may be abstract, but they are
supposed to be telling us something about real-world objects. Perhaps we
can show this equation is true by relating it to some real-world situation.
Why did it ever occur to anyone to investigate this equation?

Examine the left-hand side. It is telling us first to choose k objects out
of n possibilities. Having done that, we then choose r objects out of the k

we just chose. We might think of this as first forming a committee with k

members out of n people to choose from. We then form a subcommittee of
r members out of the k people available.

Now examine the right-hand side. Does it also count the number of ways
of forming a subcommittee of size r out of a group of k people, who were
themselves chosen from a group of n people? The first term on the right
is

(

n

r

)

, and it represents the number of ways of choosing r people out of n

possibilities. It is as if we are first choosing the r people for the subcommittee.
The second term tells us to choose k − r people out of the remaining n − r

possibilities. After we have done that, k people will have been chosen in
total.

Summing up, on the left-hand side we first form a committee of size k

and then, from those k, form a subcommittee of size r. On the right-hand
side we begin by choosing the subcommittee of size r, and then choose k − r

additional people to enlarge our subcommittee into a committee of size k. It
follows that the equation must really be true.

A far more enlightening way of looking at the problem, don’t you think?

5.8 Problems

1. In how many ways can the letters in the word POWER be ordered?

2. In how many ways can the letters in the word BOOKKEEPER be
ordered?

3. In how many ways can the letters in the word MISSISSIPPI be ordered?

4. At a certain college the food plan allows students to choose up to
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three pieces of fruit each day. The fruits available are apples, bananas,
peaches, pears, plums, nectarines, and pineapples. If a student takes
his maximum allotment of fruit each day, for how many days can he
make a different selection? How would your answer change if instead
of choosing exactly three pieces of fruit each day, the student chooses
no more than three each day (so that the number of pieces chosen each
day is some number between zero and three)?

5. In how many ways can four distinct letters be chosen from the alphabet,
if we require that the letters be chosen in alphabetical order?

6. Suppose you are given a standard deck of 52 cards. Further suppose
that you draw two cards at random from the deck. In how many ways
can you draw a card that is either a king or a spade? In how many
ways can you draw a three or a seven? How many cards would you
have to choose to be certain that some three of them were of the same
suit?

7. Suppose that a bookshelf is to be used to display nine new books.
Further suppose that there are eight computer science books and seven
mathematics books from which to choose. If we decide to display four
mathematics books and five computer science books, and are required
to keep the books in each subject together on the shelf, how many
different displays are possible?

8. Determine the number of ways of obtaining the following poker hands:
One pair, Two pairs, Three of a kind, Four of a kind and Straight flush.

9. How many strings of six distinct lowercase letters from the English
alphabet contain the letter a?

10. How many zeros appear at the end of (100!)?

11. Suppose you are taking a true/false test with twenty questions. In how
many ways can you answer the questions if every question is answered?
How would your answer change if we allowed the possibility of leaving
some of the questions blank (so that there are three possible answers
to each question: True, False and Blank).

12. What is the least number of three digit area codes needed to guarantee
that forty million phones have distinct, ten-digit phone numbers?



5.8. PROBLEMS 95

13. In how many ways can we seat eight people in a line if there are two
people who refuse to sit next to each other?

14. Suppose you choose five points at random in the interior of a square
whose sides have length two. Prove that there are two points whose
distance from each other is smaller than

√
2.

15. How many positive integers would you need to be certain that at least
six of them leave the same remainder when divided by seventeen?

16. In how many ways can the letters A through E be placed around a
circle? By this we mean that orderings like (A, B, C, D, E) and (B,
C, D, E, A) should be considered identical. In general, two circular
arrangements are the same if one can be obtained from the other by
a clockwise rotation. Can you generalize your result to include the
possibility of n objects arranged in a circle, instead of just five?

17. Let us define the sum of a set of integers to be the sum of the elements
in that set. Let S be a set of positive integers, none of them greater
than 15. Suppose that no two disjoint subsets of S have the same sum.
Prove that S can not contain more than 5 elements.

18. When you write out the numbers from one to one thousand, how many
times do you use the number five?

19. Suppose each square of a 3 × 7 grid is colored either black or white.
One example of such a grid is the following:

3 � � � � � � �

2 � � � � � � �

1 � � � � � � �

a b c d e f g

Prove that in any such grid there is always a rectangle with four distinct
squares as corners such that those corners are all the same color. In
the example above, the rectangle whose corners are b2, b3, d2 and d3
is one such rectangle.
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20. Let n be a positive, even integer. Provide a counting argument to prove
the following equation:

n

2
∑

k=0

(

n

2k

)

=

n

2
∑

k=1

(

n

2k − 1

)

.


