
Chapter 7

Number Theory

7.1 Prime Numbers

Any two integers can be multiplied together to produce a new integer. For
example, we can multiply the numbers four and five together to produce
twenty. In this situation we say that “four divides twenty” and “five divides
twenty,” and we write 4|20 and 5|20. More generally, we say a|c if there is
some integer b such that ab = c.

Notice that we do not say that b has to be positive. Thus, we have that
for any integer a, that a|0. This follows from the fact that a × 0 = 0 for any
integer a. There is also no reason to restrict our attention to nonnegative
numbers. Negative numbers can divide one another just as well. We can also
say things like −5|20, as deduced from the fact that −4 ×−5 = 20.

While it is true that you can not unscramble an egg (not without a large
expenditure of energy, anyway), multiplication can be undone. And just
as scientists are fond of breaking down compounds into their component
elements and elements into their component atoms, sometimes we like to
break down large numbers into the smaller numbers out of which they are
made. Thus we might start with the number 100 and notice that 100 =
25× 4 = 52 × 22. Here the process ends, since the numbers two and five can
not be further broken down.

Indeed, it is easy to see that no matter what number we start with, there
must come a time when we reach numbers that can not be broken down any
farther. This is so because the divisors of any integer must be smaller (in
absolute value, if we are dealing with a negative number) than the integer
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112 CHAPTER 7. NUMBER THEORY

itself. Since zero is the smallest absolute value there is, we see that we can
not continue breaking down an integer into smaller pieces indefinitely.

From now on let us assume that we are dealing explicitly with positive
integers. The numbers residing at the end of such a chain of factorizations
will have the property that their divisors will be one and themselves and
that is all (for if they had other divisors, we could continue breaking them
down). Such integers are referred to as prime numbers. The primes can be
viewed as the atoms out of which integers are made. We declare by fiat that
the number one is not prime, even though it does satisfy the definition we
gave a moment ago. We do not make large numbers by starting with smaller
numbers and multiplying by one.

We already know that any number can be factored into primes. But is it
possible that this factorization is not unique? Earlier we started with 100,
factored it into 25 × 4 and then into 52 × 22. But we could also have started
by writing

100 = 50 × 2 = 25 × 2 × 2 = 52 × 22

or

100 = 10 × 10 = 5 × 2 × 5 × 2 = 52 × 22.

So in this case it seems that no matter how we begin our factorization, we
always end up with the same primes at the end. But is this always true?

Indeed it is. To prove this, we first need to introduce some other notions.
If a and b are two integers then we could make a list of all the integers that

divide a and a separate list of all the numbers that divide b. Since the number
one divides every integer, it will appear on both lists. It is possible that some
other numbers will also appear on both lists. Any number appearing on both
lists will be called a common divisor of a and b, and the largest number
appearing on both lists will be called the greatest common divisor , or
GCD of a and b. We use the notation (a, b) to denote the GCD of a and b.
It is not lost on me that this is the same as the notation for the ordered pair
(a, b), but it will be clear from the context which meaning we have in mind.

For example, if a = 24 and b = 40, then the divisors of a are

1, 2, 3, 4, 6, 8, 12, 24

and the divisors of b are

1, 2, 4, 5, 8, 10, 20, 40.
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Since the largest number to appear on both lists is 8, we have (24, 40) = 8.
If (a, b) = 1, meaning that the largest number dividing both a and b is one,

then we say that a and b are relatively prime. Alternatively, the fraction a
b

is in lowest terms. It is an amusing fact that if a and b are relatively prime,
then we can find integers x and y (at least one of which is negative), such
that

ax + by = 1.

Proving this requires a gadget called the Euclidean algorithm. Since intro-
ducing that here would be far more trouble than its worth, I will ask you to
accept this one on faith.

As an example, let a = 12 and let b = 35. Then a and b are relatively
prime. If we take x = −32 and y = 11 then

(−32)(12) + (11)(35) = 1.

Having accepted that statement, however, we can now prove the following:

Lemma 1. Let a, b and c be integers such that a|bc and (a, b) = 1. Then

a|c.

Proof. Suppose a|bc and (a, b) = 1. Then there are integers x and y such
that

ax + by = 1.

From this it follows that
acx + bcy = c.

It is clear that a|acx. Since we are assuming that a|bc, we have that a|bcy
as well. Since the sum of two multiples of a is again a multiple of a, we see
that a|acx + bcy as well. But this says a|c as desired.

An interesting corollary of this is that if p is prime, p|ab and p 6 |a, then
p|b. This follows from the observation that if p 6 |a then (a, p) = 1. Now we
can apply our lemma. Of course, there is nothing special about taking the
product of two numbers. The same result holds for products of three or more
integers as well.

Our corollary says that if a prime number p divides the product of two
numbers, then it had to divide one of the two numbers to begin with. To see
the significance of this, consider what happens when we try this without a
prime number. For example, observe that 6|(8 × 3) and 6 6 |8, but also 6 6 |3.
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Of course, six is not prime. We see that it is essential to our lemma that p

be a prime number.
Why is that? Well, six is just a fancy way of writing two times three.

Meanwhile, eight is two times four. Speaking informally, we see that the
ingredients for making up a six were split between the eight and the three.
You see, non-prime numbers can be broken up into smaller pieces. These
pieces can then be split between the numbers a and b. In this way a non-
prime number might divide the product ab without dividing either piece
individually. This is precisely what you can not do with primes. Prime
numbers can not be broken down in this way. Hence the lemma.

Armed with this lemma, we can now smite the problem of proving the
uniqueness of a prime factorization. For suppose that some integer x has two
different prime factorizations. We will write:

pa1

1 pa2

2 · · · pak

k = qb1
1 qb2

2 · · · qb`

` .

where the pi’s and the qi’s are prime numbers. Notice that at the moment
we are not even assuming k = `.

We now observe that p1 divides the left-hand side. It therefore divides
the right-hand side as well. By using the lemma we conclude that p1|qi for
some i between one and `. We can assume, without loss of generality, that
p1 = q1. If we now divide both sides by p1 we get

pa2

2 · · · pak

k = qb2
2 · · · qb`

` .

We could now repeat the process to discover that p2 = q2 and so on. We
continue in this manner until all of the pi’s are exhausted. At this point we
will find that we have exhausted the qi’s as well. If this does not happen, we
would have a product of prime numbers equaling one, which is not possible.

7.2 Least Common Multiple

Before leaving this topic behind, there is one more item that ought to be
mentioned. Just as we can start with any positive integer and break it down
into its prime factors, we can also start with any integer and consider its
multiples. Thus, the number 24 breaks down into 23 × 3, and its multiples
build up through 48, 72, 96 and so on. If we take any two integers and begin
listing their multiples, we will eventually find that some integer appears on
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both lists. For example, if our two integers are x and y then the number
xy will appear on both. It follows that there must be some smallest number
that appears on both lists, and this number is called the least common

multiple , or LCM, of x and y. The LCM is denoted by [x, y].
We find that the LCM of 24 and 36 is 72 and that the LCM of 17 and 13

is 221, which happens to be 17 × 13.
Both the GCD and the LCM of two integers can be characterized by their

prime factorizations. Notice that if

n = pa1

1 pa2

2 · · · pak

k

denotes an arbitrary integer, then the prime factorization of any divisor d of
n must take the form

d = pb1
1 pb2

2 · · · pbk

k

where 0 ≤ bi ≤ ai for all i. In other words, the prime factorization of any
divisor of n can use only the primes making up n, taken to an exponent no
greater than ai.

Now suppose that x and y are two arbitrary positive integers. If d is a
common divisor of x and y, then all of the primes appearing in the factor-
ization of d must also appear in the factorizations of x and y. The greatest
common divisor of x and y will be obtained by choosing the exponent of
these primes to be as large as possible.

For example, let x = 72 = 22 × 32 and y = 810 = 2 × 34 × 5. Then the
GCD of x and y is the number 2 × 32 × 50 which is 18. Since the prime 5
only appears in the factorization of one of the numbers, it can not appear in
the prime factorization of any common divisor of x and y.

As a more extravagant example, let

x = 237 × 437 × 10120 × 10313

and let
y = 1317 × 2312 × 2948 × 9725 × 10310.

Then the GCD of x and y is

d = 130 × 237 × 290 × 430 × 970 × 1010 × 10310 = 237 × 10310.

In general, let x and y be two integers and let p1, · · · , pk be a complete listing
of all the primes appearing in the factorizations of either of the two numbers.
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Let x = pa1

1 pa2

2 · · · pak

k and let y = pb1
1 pb2

2 · · · pak

k , where we leave open the
possibility that some of the exponents might be equal to zero. Then

(x, y) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · p

min(ak,bk)
k .

What about the LCM? Well, if m is a common multiple of two numbers
x and y, then the prime factorizations of x and y must be embedded in the
prime factorization of m. Thus, if x = 72 and y = 810, then the LCM is
m = 23 × 34 × 5 = 3, 240. In the more extravagant example above we find
that

[x, y] = 1317 × 2312 × 2948 × 438 × 9725 × 10120 × 10313.

In general, if x and y have the factorizations described above, then

[x, y] = p
max(a1,b1)
1 p

max(a2,b2)
2 · · · p

max(ak,bk)
k .

An amusing consequence of this is the following observation:

(x, y)[x, y] =
(

p
min(a1,b1)
1 · · · p

min(ak,bk)
k

)(

p
max(a1,b1)
1 · · · p

max(ak,bk)
k

)

= p
min(a1,b1)+max(a1,b1)
1 · · · p

min(ak,bk)+max(ak,bk)
k

= pa1+b1
1 · · · pak+bk

k

= xy.

We have thus proven the following result:

Theorem 1. If x and y are positive integers, then xy = (x, y)[x, y].

7.3 Congruences

Let us suppose that today is Monday and that you want to know the day of
the week twenty-three days from now. One way to approach the problem is
to remember that every seventh day is Monday. It follows that twenty-one
days from now will be Monday again. So twenty-three days will put us at
Wednesday.

If today is Monday, then what day of the week will it be 253 days from
now? To solve this we need only realize that 252 is a multiple of seven.
Consequently, 252 days from now will be Monday again, and 253 days will
bring us to Tuesday.
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As one final example, suppose that it is currently noon and you want to
know the time 23, 999, 999 hours from now. Since this is just one hour less
than 24, 000, 000, which is a multiple of 24, we deduce that 23, 999, 999 hours
from now will be 11 : 00 in the morning.

In the first two examples, we did not care about the actual number of
days. We only cared about the remainder this number left upon division
by seven. In the third example, it was not the raw number of hours that
mattered, but only the remainder this number left when divided by 24.

Let us fix a positive integer m. Let x and y be arbitrary positive integers.
We say that “x is congruent to y modulo m” if x and y leave the same
remainder when divided by m. We write x ≡ y (mod m). Notice that if
x ≡ y (mod m), then x − y is a multiple of m.

Thus, we might say that 42 ≡ 26 (mod 8) and 15 ≡ 75 (mod 5) and
15 ≡ 53 (mod 13) but 5 6≡ 17 (mod 6).

When working modulo m, we see that any integer x must be equivalent
to one of the numbers 0 through m. This follows from the fact that there
are only m possible remainders that you can leave upon division by m. The
number r lying between 0 and m that is congruent to x is referred to as the
least residue of x modulo m. So if we are working mod 8 then the least
residue of 26 is 2. On the other hand, if we were working mod 11, then the
least residue of 26 would be 4.

It is a curious fact that if x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then
x1 + x2 ≡ y1 + y2 (mod m). This follows from the observation that from the
first statement we have that x1 − y1 is a multiple of m while from the second
statement we have that x2 − y2 is a multiple of m. From this it follows that
(x1 − y1) + (x2 − y2) is a multiple of m.

Equally curious is the fact that, given the assumptions above, x1x2 ≡ y1y2

(mod m). This is trickier to prove, but notice that since x1 − y1 and x2 − y2

are multiples of m, the numbers y2(x1−y1) and x1(x2−y2) are also multiples
of m. But this implies that

y2(x1 − y1) + x1(x2 − y2) = x1x2 − y1y2

is also a multiple of m.
To be concrete, let us use the number 7 for m. Then we have shown, for

example, that if x ≡ 4 (mod 7) and y ≡ 5 (mod 7) then

x + y ≡ 4 + 5 ≡ 9 ≡ 2 (mod 7)
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and
xy ≡ 4 × 5 ≡ 20 ≡ 6 (mod 7).

We now know that the remainder of a sum is the sum of the remainders,
and the remainder of a product is the product of the remainders. We will
make extensive use of this fact in the next section.

To put this more extravagantly, let us imagine partitioning the integers
into seven sets, each one representing a possible remainder that you might
leave when divided by 7. Thus, one of the sets will contain all of the multiples
of seven. another will contain all the numbers leaving a remainder of one
when divided by seven, and so forth until we reach the last set which contains
all the numbers leaving a remainder of six when divided by seven. Then what
we have done is to define a method for adding and multiplying these sets.

For example, let 2 denote the set of all numbers leaving a remainder of
2 when divided by seven and let 3 denote the set of all numbers leaving a
remainder of 3 when divided by seven. Then to determine 2 × 3 we begin
by choosing one representative out of each of these sets. We observe, for
example, that 9 ∈ 2 and 10 ∈ 3. We see that 9 + 10 = 19 and that 19 ∈ 5
while 9 × 10 = 90 ∈ 6. Therefore, we can say that

2 + 3 = 5 and 2 × 3 = 6.

In working with congruences mod n, it is convenient to pretend that the
numbers 0 through n−1 are the only ones there are. Every positive integer is
congruent mod n to one of the numbers on that list. When you are dividing
by n, there are only n possible remainders that you can obtain.

7.4 Divisibility Rules

As an application of our musings about congruences, let us ponder the divis-
ibility rules you learned in your mathematical babyhood.

Everyone knows that to determine if a number is a multiple of two you
need only consider the final digit. If that digit is even, then so is the whole
number, and if that digit is odd then the number is odd. Everyone also knows
that a number is a multiple of five if and only if its final digit is a zero or five
and that a number is a multiple of ten if and only if its final digit is zero.

Less well-known is the fact that a number is a multiple of three only if its
digits add up to a multiple of three. This trick works for nine as well, but it
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does not work for four. To determine if a number is a multiple of four, you
look at its last two digits. If those two digits form a multiple of four, then the
whole number is a multiple of four. Thus, 135,663,324 is clearly a multiple
of four because its last two digits, 24, form a multiple of four. Meanwhile,
since

1 + 3 + 5 + 6 + 6 + 3 + 3 + 2 + 4 = 33,

we see that this number is a multiple of three, but is not a multiple of nine.
When you learn these rules in elementary school they are usually pre-

sented as arbitrary rules that you are expected to memorize. Now we are in
a position to see why they are true.

The key to proving all of these rules lies in the fact that any integer can
be written in expanded notation. By this I mean that you can, for example,
write

3847 = (3 × 103) + (8 × 102) + (4 × 10) + 7

or
26, 234 = (2 × 104) + (6 × 103) + (2 × 102) + (3 × 10) + 4

or
31 = (3 × 10) + 1.

Now let us suppose that we wish to determine whether a number is divisible
by two. In other words, we seek the remainder our number leaves when
divided by two.

To be concrete, let us use the number 31 = (3 × 10) + 1. Using what
we learned in the last section, we find that we can figure out the remainders
of (3 × 10) and 1 when divided by two, and then add those remainders to
finish the problem. Further, to determine the remainder left by 3× 10 when
divided by 2, we can work with the three and the ten individually. Thus,
we see that 10 is an even number, and therefore leaves a remainder of zero
when divided by two. It follows that ten times anything will still be even.
So 3 × 10 leaves a remainder of zero.

In general, we notice that every integer can be written as the sum of its
final digit and a multiple of ten. For example, 245 = 240 + 5. We know that
any multiple of ten is even because ten is itself even.

This also shows why any multiple of ten must end in 0. Since every
number can be written as the sum of a multiple of ten with its final digit,
we see that the only way a number can be a multiple of ten is for its final
digit to be a multiple of ten. The only digit satisfying this requirement is 0.
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Since the only digits that are multiples of five are 0 and 5, we obtain that
divisibility rule as well.

What about divisibility by four? The key realization here is that every
number is the sum of a multiple of one hundred and its final two digits.
Any multiple of one hundred is also a multiple of four. It follows that we
need only consider the number formed by the last two digits. For example,
3847 = 3800+47. Since 3800 is a multiple of four, we need only worry about
the 47. We notice that, actually, 47 leaves a remainder of three when divided
by four. We conclude that 3847 also leaves a remainder of three when divided
by four.

Another way of expressing this is to observe that every power of ten
beyond ten itself is a multiple of four.

A similar statement could be made concerning eight. Every power of ten
beyond 100, namely 1000, 10000 and so forth, is a multiple of eight. Since
any number can be written as the sum of its last three digits and a multiple
of one thousand, we conclude that a number is a multiple of eight only when
its last three digits are.

Which brings us to the vexing case of three and nine. It is a sad fact of
life that powers of ten are never multiples of three or nine. However, we do
have the next best thing. Observe that any number that is one less than a
nontrivial power of ten is always composed of a series of nines. For example,
one less than 10, 000 is 9, 999. Such a number is clearly a multiple of both
three and nine, and consequently one more than a multiple of three as well.

To illustrate the next step, we will assume that we have a four-digit
number N = d4d3d2d1. Here we are thinking of the di’s as the digits of the
number. We are NOT multiplying them together. Let me also emphasize
that there is nothing special about four digit numbers. We are using a four-
digit number simply to illustrate the argument. The same logic will work for
numbers of any size.

We begin by writing N in expanded notation:

N = 1000d4 + 100d3 + 10d2 + d1.

Our goal is to determine the remainder this number leaves when divided by
three. Our reasoning in the previous section reveals that we can do this by
examining the remainders left by 1000d4 , 100d3 , 10d2 and d1 individually,
and then adding together the results.

First we consider 1000d4. By again invoking the results of the previous
section we know that we can consider the 1000 and the d4 separately, and
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multiply their remainders together. The number 1000 leaves a remainder of
one when divided by four. From this it follows that the numbers 1000d4 and
d4 leave the same remainder upon division by three.

Exactly the same argument shows that 100d3 leaves the same remainder
as d3 when divided by three, and likewise for d2. The conclusion we draw
from all this is that the remainder left by

1000d4 + 100d3 + 10d2 + d1

when divided by three is the same as the remainder left by

d4 + d3 + d2 + d1,

which is the sum of the digits of N .
This technique also works for nine, since every power of ten is one more

than a multiple of nine. But it does not work for, say, seven, because it is
not the case that every power of ten leaves a remainder of one when divided
by seven.

For that matter, the remainders left when powers of ten are divided by
seven do not reveal any nice pattern. That is why there is no divisibility rule
for seven.

7.5 Exercises

1. Find the prime factorization of 52, 440.

2. Find the GCD and LCM of the numbers 54 and 36. Find integers x

and y so that 54x + 36y is equal to (54, 36).

3. Let

x = 3117121324191023152917

and let

y = 36714178191623529173134.

Find the GCD and LCM of x and y. It is acceptable to leave your
answer in prime factorization form.

4. Suppose that p and q are prime numbers. Prove that p3 6= q5.
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5. Find a single integer x that simultaneously satisfies each of the following
congruences: x ≡ 3 (mod 20), x ≡ 1 (mod 7) and x ≡ 10 (mod 1)1.

6. Think about congruence mod 17. List three integers greater than 17
that are in 7. Now list three numbers greater than 17 that are in −3.

7. Prove that there is no positive integer n for which 14n has a units digit
of 0.

8. Let p(x) be a polynomial with integer coefficients. Prove that there
must be some integer a such that p(a) is not prime. What is the
smallest such value of a?

9. Let p and q be distinct primes and let n be a positive integer. Assume
that p|n and q|n. Prove that pq|n.

10. Let a,b and c be integers. Prove that if a|b and b|c then a|c.

11. Prove that any number of the form abc, abc is a multiple of 13? For
example, the numbers 243, 243, 505, 505 and 752, 752 are all multiples
of 13. Are there any other numbers by which abc, abc must be divisible?

12. Let n be a positive integer satisfying n ≥ 2. We say that m is a
quadratic residue mod n if there is a perfect square congruent to m

mod n. For example, if n = 10, then 6 is a quadratic residue, because
36 is a perfect square and 36 ≡ 6 (mod 10). We also have that 5 is a
quadratic residue mod 10 because 25 is a perfect square and 25 ≡ 5
(mod 10). On the other hand, 3 is not a quadratic residue mod 10,
since there is no perfect square congruent to 3 mod 10. It is customary
not to treat zero as a quadratic residue for any modulus, since 0 is a
perfect square regardless of your choice of n.

Find all of the quadratic residues mod 7. (In other words, which of the
numbers 1, 2, 3, 4, 5, 6 could be the remainder when a perfect square is
divided by 7?) Find all of the quadratic residues mod 13.

13. Let p be an odd prime number. Prove that exactly half of the numbers
1, 2, 3, . . . , p − 1 are quadratic residues mod p.

14. Derive a divisibility rule for divisibility by 11.
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15. Let S contain all of the positive integers that can be expressed in the
form 6x +3y for some positive integers x and y. Describe the elements
of S. Can you generalize this result to the set that contains all of the
integers ax + by where a and b are fixed positive integers?

16. Prove without using prime factorizations that if x and y are positive
integers, then (x, y)[x, y] = xy.

17. Suppose that p is the smallest prime factor of an integer n and that

p >
√

n
p
. Prove that n

p
is prime.

18. Prove that neither the sum of two perfect cubes nor the difference of
two perfect cubes can possible be prime.

19. Let a and b be distinct positive integers. Prove that there must exist
an integer n with the property that a+n and b+n are relatively prime.

20. What is the remainder when (17, 123)50 is divided by 6.


