CALCULUS CONCEPTS

1) LIMITS

$$|x| = \sqrt{x^2} \ge 0$$
, $|x|$ is the distance x is from 0, $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

|A-B| is the distance A is from B

 $\lim_{x \to a} f(x) = L \text{ means if } 0 < |x - a| \text{ is small enough then } |f(x) - L| \text{ is nearly } 0$

 $\lim_{x \to a} f(x) = L \text{ means if } x \neq a \text{, but the distance } x \text{ is from } a \text{ is small enough then the distance } f(x) \text{ is from } L \text{ is nearly 0.}$

SOME LIMIT RULES

Suppose c is a number and $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$

(1) $\lim_{x \to a} c = c$ (2) $\lim_{x \to a} x = a$ (3) $\lim_{x \to a} f \pm g(x) = L \pm M$ (4) $\lim_{x \to a} cf(x) = cL$ (5) $\lim_{x \to a} fg(x) = LM$ (6) If $M \neq 0$ then $\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{M}$ (7) If M = 0 and L = 0 then $\lim_{x \to a} \frac{f}{g}(x)$ DOES NOT EXIST(DNE) (8) $\lim_{h \to 0} \frac{\sin h}{h} = 1$ (9) $\lim_{x \to 0^+} \frac{1}{x} = \infty$ (DNE) (10) $\lim_{x \to 0^-} \frac{1}{x} = -\infty$ (DNE) (11) $\lim_{x \to \infty} \frac{1}{x} = 0$ (12) $\lim_{x \to \infty} \frac{1}{x} = 0$

2) CONTINUITY

The function f is continuous at x = a if and only if $\lim_{x \to a} f(x) = f(a)$ The function f is continuous if it is continuous at each number in its domain.

SOME CONTINUITY RULES

Suppose c is a number, the function f is continuous at x = a, the function g is continuous at x = a and the function p is continuous at x = f(a)

(1) cf is continuous at x = a
(2) f ± g is continuous at x = a
(3) fg is continuous at x = a
(4) If g(a) ≠ 0 then f/g is continuous at x = a
(5) p ∘ f is continuous at x = a
(6) polynomials are continuous

If f is continuous on [a,b] then f attains a maximum and a minimum value on [a,b].

Intermediate Value Theorem: If f is continuous on [a,b] and $f(a) \le y \le f(b)$ or $f(b) \le y \le f(a)$ then there is a c in (a,b) so that f(c) = y.

3) DERIVATIVES

Let the function f be defined on [a,b] then the line through (a, f(a)) and (b, f(b))is called the secant line and its slope is given by $m = \frac{f(b) - f(a)}{b - a}$

$$\Delta f(x) = f(x+h) - f(x)$$

The difference quotient of the function f is $\frac{\Delta f}{h}(x) = \frac{\Delta f(x)}{h} = \frac{f(x+h) - f(x)}{h}$.

If $\lim_{h \to 0} \frac{\Delta f}{h}(x) = \lim_{h \to 0} \frac{\Delta f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ exists then we say the function f is differentiable at x and write $f'(x) = \lim_{h \to 0} \frac{\Delta f}{h}(x) = \lim_{h \to 0} \frac{\Delta f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

The function f is called differentiable if it is differentiable at each x in its domain.

SOME DIFFERENTIATION RULES

Let c be a number, f, g be differentiable functions

(1)
$$\frac{d}{dx}c = 0$$

(2) $\frac{d}{dx}f \pm g(x) = f'(x) \pm g'(x)$
(3) $\frac{d}{dx}cf(x) = cf'(x)$
(4) $\frac{d}{dx}fg(x) = f'(x)g(x) + f(x)g'(x)$
(5) $\frac{d}{dx}\frac{f}{g}(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
(6) Chain Rule: $\frac{d}{dx}f \circ g(x) = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$
(7) $\frac{d}{dx}x^r = rx^{r-1}$
(8) $\frac{d}{dx}[g(x)]^r = r[g(x)]^{r-1}g'(x)$
(9) $\frac{d}{dx}\sin x = \cos x$
(10) $\frac{d}{dx}\cos x = -\sin x$

Differentiable functions are continuous, but a continuous function may not be differentiable.

Mean Value Theorem: If the function f is differentiable on (a,b) and continuous on [a,b] then there is a number $c \in (a,b)$ so that $f'(c) = \frac{f(b) - f(a)}{b-a}$. (The slope of the secant line is equal to at least the slope of one tangent line. The secant line is parallel to a tangent line.)

If f'(a) > 0 then $f \uparrow on$ an interval containing a. If f'(a) < 0 then $f \downarrow on$ an interval containing a.

4) INTEGRALS

Let the function f be defined on [a,b] then $\sum_{j=1}^{n} f(x_{j}^{*})\Delta x_{j}$ is called the Riemann Sum of f on [a,b] with partition $P = \{a = x_{0} < x_{1} < x_{2} < ... < x_{n-1} < x_{n} = b\}$ and where $\Delta x_{j} = x_{j} - x_{j-1}$.

If $\lim_{\|P\|\to 0} \sum_{j=1}^n f(x_j^*) \Delta x_j$ where $\|P\| = \max\{\Delta x_j, j=1,...,n\}$ exists then we say f is integrable on [a,b] and we write $\int_a^b f(x) dx = \lim_{\|P\|\to 0} \sum_{j=1}^n f(x_j^*) \Delta x_j$.

SOME INTEGRAL RULES

.

If f is continuous on [a,b] then f is integrable on [a,b].

If
$$F'(x) = f(x)$$
 on $[a,b]$ then $\int_{a}^{b} f(x)dx = F(b) - F(a)$.

If $F(x) = \int_a^x f(t)dt$ on [a,b] then F'(x) = f(x).

If f is continuous on [a,b] then $\int_{a}^{b} f(x)dx = F(b) - F(a) = f(c)(b-a)$ for some $c \in (a,b)$.

$$\int f(x)dx = F(x) + c \text{ if and only if } F'(x) = f(x).$$

 $y'(x) = f(x, y(x)); y(x_0) = x_0$ if and only if $y(x) = y_0 + \int_{x_0}^x f(s, y(s)) ds$ for f continuous on a region containing (x_0, y_0) . Let c be a number, f, g be integrable functions

(1)
$$\int_{a}^{b} cdx = cx |_{a}^{b} = c(b-a)$$

(2) $\int_{a}^{b} f \pm g(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$
(3) $\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$
(4) Chain Rule: $\int_{a}^{b} f(g(x))g'(x)dx = f(g(x))|_{a}^{b} = \int_{g(a)}^{g(b)} f(u)du$
(5) Integration By Parts: $\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} g(x)f'(x)dx$