MATH 237 EXAM 2 REVIEW SHEET OCTOBER 25, 2016

MATERIAL: 11.1-11.5,12.1-12.5

TOPICS: Curves $(r: \Re \to \Re^n)$ and functions $(f: \mathbb{R}^n \to \mathbb{R})$ (n = 1, 2, 3).

1. Graph the following curves. Give the tangent line at the given parameter. Graph the tangent line on your graph. (a) $\mathbf{r}(t) = 2\cos(t)\mathbf{i} - 3\sin(t)\mathbf{j}$; $t_0 = \frac{\pi}{3}$ (b) $\mathbf{r}(t) = 2t\mathbf{i} + \ln(2t)\mathbf{j}$; $t_0 = 1$

(c)
$$\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + t^2\mathbf{k}$$
; $t_0 = \frac{5\pi}{3}$ (d) $\mathbf{r}(t) = t^2\mathbf{i} - 3t\mathbf{j} + 5\mathbf{k}$; $t_0 = -2$

- 2. Give the velocity vector, acceleration vector, and the curvature and arc-length parameter for the following curves. Also, give the tangential and normal components of the acceleration.
- (a) $\mathbf{r}(t) = \sin(t^2)\mathbf{i} + \cos(t^2)\mathbf{j}$ (b) $\mathbf{r}(t) = e^t(\cos(t)\mathbf{i} + \sin(t)\mathbf{j})$ (c) $\mathbf{r}(t) = \sin(4t)\mathbf{i} + 3t\mathbf{j} + \cos(4t)\mathbf{k}$
- (d) $\mathbf{r}(t) = t^2 \mathbf{i} + \ln(t) \mathbf{j} + 2t \mathbf{k}$
- 3. Given the following velocities and initial positions give the position vector.
- (a) $\mathbf{v}(t) = 9t^2\mathbf{i} + e^{-t}\mathbf{j} + 2t\mathbf{k}$; $\mathbf{r}(0) = 3\mathbf{i} 4\mathbf{j} + \mathbf{k}$ (b) $\mathbf{v}(t) = \cos(4t)\mathbf{i} 3t\mathbf{j} \sin(4t)\mathbf{k}$; $\mathbf{r}(0) = \mathbf{i} 4\mathbf{k}$
- 4. Given the following accelerations and initial data give the position vector.
- (a) $\mathbf{a}(t) = \sqrt{1+t}\mathbf{i} + e^{3t}\mathbf{j} 2t\mathbf{k}$; $\mathbf{v}(0) = 3\mathbf{i} 4\mathbf{j} + \mathbf{k}$; $\mathbf{r}(0) = \mathbf{j} \mathbf{k}$
- (b) $\mathbf{a}(t) = (4 t^2)^2 \mathbf{i} 5t^4 \mathbf{j} + (1 2t) \mathbf{k} \; ; \; \mathbf{v}(0) = \mathbf{k} \; ; \; \mathbf{r}(0) = \mathbf{i} + \mathbf{k}$
- 5. Give the normal plane for the following curves at the following parameter value.

(a)
$$\mathbf{r}(t) = 9\cos(4t)\mathbf{i} + 9\sin(4t)\mathbf{j}$$
; $t_0 = \frac{7\pi}{4}$ (b) $\mathbf{r}(t) = 3t\mathbf{i} + \ln(9t)\mathbf{j}$; $t_0 = \frac{1}{9}$ (c) $\mathbf{r}(t) = t^2\mathbf{i} - 3t\mathbf{j} + 5\mathbf{k}$; $t_0 = -2$

- 6. Give the domain and ranges of the following functions. Also give 5 level curves or level surfaces and describe them. (a) $f(x, y) = \sqrt{4 x^2 9y^2}$ (b) $f(x, y) = e^{4x^2 y}$ (c) $f(x, y) = \ln(y 4x + 3)$
- (d) $f(x, y, z) = z \sqrt{x^2 + y^2}$ (e) $f(x, y, z) = \ln(2z + 3y 4x)$ (f) $f(x, y, z) = e^{\sqrt{100 x^2 4y^2 z^2}}$
- 7. Let $z = f(x, y) = x^2 y^3 \sin(x + y^2)$ and $w = g(x, y, z) = y \sin(z) e^{x^2 y}$. Give the following.

(a)
$$f_x$$
 (b) $g_y(0,1,\frac{\pi}{2})$ (c) $\frac{\partial^2 z}{\partial x^2}$ (d) $\frac{\partial w}{\partial x}|_{(x,y,z)=(0,1,-\frac{\pi}{2})}$ (e) z_{xy} (f) $\frac{\partial^2 f}{\partial y \partial x}$ (g) $\frac{\partial^3 w}{\partial x^2 \partial z}$ (h) g_{xzx}

- 8. Let $z = e^{\cos(xy^2)}$. Give the directional derivative of z in the $\mathbf{u} = 2\mathbf{i} 3\mathbf{j}$ direction. Give the direction of maximum increase in z at $(1, \sqrt{\pi})$.
- 9. Give the gradients of the following functions.
- (a) $f(x, y) = xe^{xy-x^2}$ (b) $w = xyz^3 \cos(x^2z)$
- 10. A hiker is walking along the path given by $\mathbf{r}(t) = t\mathbf{i} + t\sin t\mathbf{j}$. The hiker's altitude is given by $z = x^2 xy + y^2$. Give (a) the lowest point on the hiker's trail. (b) the rate of change in the hiker's altitude at $t = \frac{\pi}{2}$. (c) the direction the hiker should walk in at $t = \frac{5\pi}{2}$ to gain altitude the quickest. (d) the direction the hiker should walk in at $t = 6\pi$ to make the walking the easiest.