MATH 237 EXAM 3 REVIEW SHEET NOVEMBER 15, 2016

MATERIAL: Tangent Planes and Normal Lines, Double Integrals, Triple Integrals, 13.1-13.3,13.5,13.6

1. Give the tangent plane and normal line to the surface at the given point.

(a)
$$z = xe^{-x^2 - y^2}$$
; (1,0) (b) $4x^2 + 9y^2 + 36z^2 = 36$; (1,-1, $\frac{\sqrt{26}}{3}$)

(c)
$$z = x^2 + xy + 2y^2 + 7x + 7y + 15$$
; (-3,-1) (d) $z = e^{-(x-2)^2 - (y+4)^2}$; (2,-4)

- 2. Give the tangent plane to $4xy x^4 x^2y^4 z = 0$ whose normal is given by the line $x = y 2 = \frac{z+1}{4}$.
- 3. Give the average values of the following functions over the regions given.

(a)
$$z = |x^2 - y^2|$$
; $Q = \{(x, y) | -2 \le x \le 2; -2 \le y \le 2\}$

(b)
$$z = |4x + y|$$
; $Q = \{(x, y) | -1 \le x \le 3; 0 \le y \le 4\}$

(c)
$$z = x - 2y$$
; $Q = \{(x, y) \mid 0 \le x \le 4; x^2 \le y \le 4x\}$

4. Draw the region for each of the integrals and give the value of the integral.

(a)
$$\int_{-2}^{2} \int_{1}^{4} x^{2} y \, dx dy$$
 (b) $\int_{1}^{4} \int_{2x}^{4x} 5 \, dy dx$ (c) $\int_{0}^{1} \int_{0}^{4y^{2}} y e^{-x^{2}} \, dx dy$ (d) $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} \cos y \, dy dx$

(e)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} e^{-x^2-y^2} dxdy$$
 (f) $\int_{-2}^2 \int_0^{\sqrt{4-y^2}} \sin \sqrt{x^2+y^2} dxdy$ (g) $\int_{-1}^2 \int_0^3 x \sin(xy) dxdy$

(h)
$$\int_0^1 \int_{x\sqrt{3}}^{\sqrt{4-x^2}} (x^2 + y^2) dy dx$$

- 5. Give the volumes. (a) inside $z = 8 x^2 y^2$ and outside $z = x^2 + y^2$ (b) bounded by x = 0, y = 0, z = 0 and x + y + z = 1 (c) bounded by x = -2, x = 2, z = 4 2y and $z = 4 y^2$ (d) inside the sphere $\rho = 1$ and the cone z = r (e) bounded by y = 4x and $y = x^2$ and whose height is given by z = xy.
- 6. BP: Due Monday November 14, 2016 at beginning of class. Give $\int_0^3 \int_{-1}^1 x e^{-3xy} dx dy$ both ways.