CALCULUS CONCEPTS

1) LIMITS

$|x|=\sqrt{x^{2}} \geq 0,|x|$ is the distance x is from $0,|x|=\left\{\begin{array}{cc}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{array}\right\}$
$|A-B|$ is the distance A is from B
$\lim _{x \rightarrow a} f(x)=L$ means if $0<|x-a|$ is small enough then $|f(x)-L|$ is nearly 0
$\lim _{x \rightarrow a} f(x)=L$ means if $x \neq a$, but the distance x is from a is small enough then the distance $f(x)$ is from L is nearly 0 .

SOME LIMIT RULES

Suppose c is a number and $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$
(1) $\lim _{x \rightarrow a} c=c$
(2) $\lim _{x \rightarrow a} x=a$ (3) $\lim _{x \rightarrow a} f \pm g(x)=L \pm M$
(4) $\lim _{x \rightarrow a} c f(x)=c L$
(5) $\lim _{x \rightarrow a} f g(x)=L M$ (6) If $M \neq 0$ then $\lim _{x \rightarrow a} \frac{f}{g}(x)=\frac{L}{M}$
(7) If $M=0$ and $L=0$ then $\lim _{x \rightarrow a} \frac{f}{g}(x)$ DOES NOT EXIST(DNE)
(8) $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
(9) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$
(DNE) (10) $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty($ DNE $)$
(11) $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$
(12) $\lim _{x \rightarrow \infty} \frac{1}{X}=0$

2) CONTINUITY

The function f is continuous at $x=a$ if and only if $\lim _{x \rightarrow a} f(x)=f(a)$
The function f is continuous if it is continuous at each number in its domain.

SOME CONTINUITY RULES

Suppose c is a number, the function f is continuous at $x=a$, the function g is continuous at $x=a$ and the function p is continuous at $x=f(a)$
(1) $c f$ is continuous at $x=a$ (2) $f \pm g$ is continuous at $x=a$
(3) $f g$ is continuous at $x=a$ (4) If $g(a) \neq 0$ then $\frac{f}{g}$ is continuous at $x=a$
(5) $p \circ f$ is continuous at $x=a$ (6) polynomials are continuous

If f is continuous on $[a, b]$ then f attains a maximum and a minimum value on [a,b].

Intermediate Value Theorem: If f is continuous on $[a, b]$ and $f(a) \leq y \leq f(b)$ or $f(b) \leq y \leq f(a)$ then there is a c in (a, b) so that $f(c)=y$.

3) DERIVATIVES

Let the function f be defined on $[a, b]$ then the line through ($a, f(a)$) and $(b, f(b))$ is called the secant line and its slope is given by $m=\frac{f(b)-f(a)}{b-a}$
$\Delta f(x)=f(x+h)-f(x)$
The difference quotient of the function f is $\frac{\Delta f}{h}(x)=\frac{\Delta f(x)}{h}=\frac{f(x+h)-f(x)}{h}$.
If $\lim _{h \rightarrow 0} \frac{\Delta f}{h}(x)=\lim _{h \rightarrow 0} \frac{\Delta f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists then we say the function f is differentiable at x and write $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\Delta f}{h}(x)=\lim _{h \rightarrow 0} \frac{\Delta f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

The function f is called differentiable if it is differentiable at each x in its domain.

SOME DIFFERENTIATION RULES

Let c be a number, f, g be differentiable functions
(1) $\frac{d}{d x} c=0$
(2) $\frac{d}{d x} f \pm g(x)=f^{\prime}(x) \pm g^{\prime}(x)$
(3) $\frac{d}{d x} c f(x)=c f^{\prime}(x)$
(4) $\frac{d}{d x} f g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ (5) $\frac{d}{d x} \frac{f}{g}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
(6) Chain Rule: $\frac{d}{d x} f \circ g(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
(7) $\frac{d}{d x} x^{r}=r x^{r-1}$ (8) $\frac{d}{d x}[g(x)]^{r}=r[g(x)]^{r-1} g^{\prime}(x)$ (9) $\frac{d}{d x} \sin x=\cos x$
(10) $\frac{d}{d x} \cos x=-\sin x$

Differentiable functions are continuous, but a continuous function may not be differentiable.

Mean Value Theorem: If the function f is differentiable on (a, b) and continuous on [a, b] then there is a number $c \in(a, b)$ so that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. (The slope of the secant line is equal to at least the slope of one tangent line. The secant line is parallel to a tangent line.)

If $f^{\prime}(a)>0$ then $f \uparrow$ on an interval containing a. If $f^{\prime}(a)<0$ then $f \downarrow$ on an interval containing a.
4) INTEGRALS

Let the function f be defined on $[a, b]$ then $\sum_{j=1}^{n} f\left(x_{j}^{*}\right) \Delta x_{j}$ is called the Riemann Sum of f on [a,b] with partition $P=\left\{a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b\right\}$.

If $\lim _{\|P\| \rightarrow 0} \sum_{j=1}^{n} f\left(x_{j}^{*}\right) \Delta x_{j}$ exists then we say f is integrable on [a,b] and we write $\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{j=1}^{n} f\left(x_{j}^{*}\right) \Delta x_{j}$.

SOME INTEGRAL RULES

If f is continuous on $[a, b]$ then f is integrable on $[a, b]$.
If $F^{\prime}(x)=f(x)$ on $[a, b]$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
If $F(x)=\int_{a}^{x} f(t) d t$ on [a,b] then $F^{\prime}(x)=f(x)$.

If f is continuous on [a,b] then $\int_{a}^{b} f(x) d x=F(b)-F(a)=f(c)(b-a)$ for some $c \in(a, b)$.
$\int f(x) d x=F(x)+c$ if and only if $F^{\prime}(x)=f(x)$.
$y^{\prime}(x)=f(x, y(x)) ; y\left(x_{0}\right)=x_{0}$ if and only if $y(x)=y_{0}+\int_{x_{0}}^{x} f(s, y(s)) d s$ for f continuous on a region containing $\left(x_{0}, y_{0}\right)$.

Let c be a number, f, g be integrable functions
(1) $\int_{a}^{b} c d x=\left.c x\right|_{a} ^{b}=c(b-a)$ (2) $\int_{a}^{b} f \pm g(x) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
(3) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ (4) $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left.f(g(x))\right|_{a} ^{b}=\int_{g(a)}^{g(b)} f(u) d u$
(5) $\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x \quad$ (integration by parts)

