A set V with two operations \bigoplus and \bigodot called vector addition and scalar multiplication, respectively is a vector space if and only if the following eight properties hold for all elements (vectors) $\bar{v} \in V$ and all scalars.

1. $\bar{v} \bigoplus \bar{u}=\bar{u} \bigoplus \bar{v}$ (commutative property)
2. $(\bar{u} \bigoplus \bar{v}) \bigoplus \bar{w}=\bar{u} \bigoplus(\bar{v} \bigoplus \bar{w})$ (associative property)
3. There is a vector $\overline{\mathbf{0}} \in V$ so that $\bar{v} \bigoplus \overline{\mathbf{0}}=\bar{v}$
4. For each $\bar{v} \in V$ there is a vector $-\bar{v} \in V$ so that $\bar{v} \bigoplus(-\bar{v})=\overline{\mathbf{0}}$
5. $c \bigodot(\bar{v} \bigoplus \bar{u})=c \bigodot \bar{v} \bigoplus c \bigodot \bar{u}$ (scalar vector distributive property)
6. $(a+b) \bigodot \bar{v}=a \bigodot \bar{v} \bigoplus b \bigodot \bar{v}$ (scalar distributive property)
7. $(a b) \odot \bar{v}=a(b \odot \bar{v})$ (scalar associative property)
8. (1) $\bigodot \bar{v}=\bar{v}$ (scalar identity property)

We will usually write \bigoplus as + and \odot as \cdot

