## MATH 238 - Sochacki

## Exam 1 - February 22, 2021

## Sections 1.1-1.6 SLE, Matrices, Determinants

1. Solve the following SLEs. Indicate how many solutions there are. Write the solutions as a sum of the solution to the corresponding homogeneous solution and a solution to the non-homogeneous problem. Give the matrices $L$ that you used to solve the SLE.
(a) $\begin{array}{r}2 x-4 y=10 \\ x+2 y=-3\end{array}$
(b) $\begin{aligned} 2 x-4 y & =1 \\ -x+2 y & =3\end{aligned}$
(c) $x+y-z=1$
(d) $\begin{gathered}2 x+4 y-3 z=1 \\ -x+2 y=1\end{gathered}$

$$
2 u_{1}+3 u_{2}-u_{3}+u_{4}=2
$$

(e) $3 u_{1}-2 u_{2}+u_{3}-u_{4}=2$
$u_{1}+u_{2}-2 u_{3}+2 u_{4}=1$

$$
3 v_{1}+v_{2}-v_{3}+v_{4}-v_{5}=3
$$

(f) $6 v_{1}+2 v_{2}-2 v_{3}+v_{4}-v_{5}=6$

$$
v_{1}-v_{2}+v_{3}-v_{4}+v_{5}=1
$$

$$
2 x+5 y+8 z=a
$$

2. Determine $a, b, c$ so that the SLE $x+4 y+7 z=b$ has none, one or infinitely many solutions. For $3 x+6 y+9 z=c$
the case of infinitely many solutions also give the solution as a sum of the corresponding homogeneous solution and non-homogeneous solution.
3. Determine which of the following matrices have inverses. Give the matrices $L$ that produce the inverse.
(a) $A=\left(\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right)$
(b) $A=\left(\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right)$
(c) $A=\left(\begin{array}{ccc}4 & -2 & 3 \\ 0 & 0 & 9 \\ 0 & 0 & 6\end{array}\right)$
(d) $A=\left(\begin{array}{ccc}8 & 15 & -21 \\ 0 & -20 & 36 \\ -16 & -40 & 60\end{array}\right)$
4. Give the inverse of the following matrix and give all the $L$ matrices that you used to find the inverse.

$$
F=\left(\begin{array}{cccc}
2 & 4 & -1 & 2 \\
1 & 2 & -1 & 3 \\
-1 & -3 & 0 & 3 \\
-3 & -6 & -3 & -1
\end{array}\right)
$$

4. Give the determinant of the following matrices and the determinant of their transposes.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
7 & 8 & 9 \\
4 & 5 & 6
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 8
\end{array}\right) \quad C=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad F=\left(\begin{array}{cccc}
1 & 2 & -1 & 2 \\
2 & 4 & 1 & 3 \\
-1 & 2 & 0 & 3 \\
-2 & 0 & 2 & -1
\end{array}\right)
$$

5. Put $A, B, C$ and $F$ from problem 4 in upper triangular form and give the determinants of these matrices. Which of these matrices have inverses?
6. Show that the inverse of $A^{T}$ is $\left(A^{T}\right)^{-1}$ and $\left(A^{-1}\right)^{T}$. What can you conclude?
7. What is the inverse of $A^{2}, A^{3}$ ?
