Determinant Rules and Equivalence

Let $n \in \mathbb{N}, A, B \in \mathbb{M}_{n}$

Theorems, Corollaries, Rules

1. $\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(\tilde{A}_{i, j}\right)$ for $i \in\{1,2, \ldots, n\}$.
2. $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(\tilde{A}_{i, j}\right)$ for $j \in\{1,2, \ldots, n\}$.
3. If A has a row of zeros or column of zeros then $\operatorname{det}(A)=0$.
4. If A is diagonal, upper triangular or lower triangular then the $\operatorname{det}(A)$ is the product of the diagonals of A.
5. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
6. Row operations on A :
a. If B is formed from A by adding a multiple of one row of A to another row of A then $\operatorname{det}(A)=\operatorname{det}(B)$.
b. If B is formed from A by switching two rows of A then $\operatorname{det}(A)=-\operatorname{det}(B)$.
c. If B is formed from A by multiplying a row of A by a scalar c then $\operatorname{det}(A)=$ $c \operatorname{det}(B)$ (cautionary rule).
7. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
8. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. $\left(\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}\right)$.
9. (Cramer's Rule)

Suppose that $\operatorname{det} A \neq 0, \bar{b} \in \mathbb{R}^{n}$ and B_{j} is the matrix formed by replacing the $j^{\text {th }}$ column of A by \bar{b} then the solution to the SLE $A \bar{x}=\bar{b}$ is given by

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)} \text { for } j=1,2, \ldots, n
$$

The following are equivalent (all true or all false):

1. The SLE $A \bar{x}=\bar{b}$ has one and only one solution.
2. Gaussian elimination gives an upper triangular matrix for A with no zeros on the diagonal.
3. The SLE $A \bar{x}=\overline{0}$ has one and only one solution.
4. A is invertible.
5. $\operatorname{det}(A) \neq 0$.
6. Cramer's Rule is true.
