Determinant Rules and Equivalence

Let $n \in \mathbb{N}$, $A, B \in \mathbb{M}_n$

Theorems, Corollaries, Rules

- 1. $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(\tilde{A}_{i,j})$ for $i \in \{1, 2, ..., n\}$.
- 2. $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(\tilde{A}_{i,j})$ for $j \in \{1, 2, ..., n\}$.
- 3. If A has a row of zeros or column of zeros then det(A) = 0.
- 4. If A is diagonal, upper triangular or lower triangular then the det(A) is the product of the diagonals of A.
- 5. $\det(A) = \det(A^T)$.
- 6. Row operations on A:
 - a. If B is formed from A by adding a multiple of one row of A to another row of A then det(A) = det(B).
 - b. If B is formed from A by switching two rows of A then $\det(A) = -\det(B)$.
 - c. If B is formed from A by multiplying a row of A by a scalar c then $\det(A) = c \det(B)$ (cautionary rule).
- 7. A is invertible if and only if $det(A) \neq 0$.
- 8. $\det(AB) = \det(A) \det(B)$. $(\det(A^{-1}) = \frac{1}{\det(A)})$.
- 9. (Cramer's Rule)

Suppose that det $A \neq 0$, $\bar{b} \in \mathbb{R}^n$ and B_j is the matrix formed by replacing the j^{th} column of A by \bar{b} then the solution to the SLE $A\bar{x} = \bar{b}$ is given by

$$x_j = \frac{\det(B_j)}{\det(A)}$$
 for $j = 1, 2, ..., n$.

The following are equivalent (all true or all false):

- 1. The SLE $A\bar{x} = \bar{b}$ has one and only one solution.
- 2. Gaussian elimination gives an upper triangular matrix for A with no zeros on the diagonal.

1

- 3. The SLE $A\bar{x} = \bar{0}$ has one and only one solution.
- 4. A is invertible.
- 5. $\det(A) \neq 0$.
- 6. Cramer's Rule is true.