Each matrix A with vectors $\overline{\mathbf{b}}_{1}, \overline{\mathbf{b}}_{2}$ below defines a SLE. For each problem below, give a so that the SLE has (i) zero solutions (ii) one solution and (iii) infinitely many solutions. (If there is no answer, explain why.) For each problem give a set of vectors that define the kernel or null space of A. Express all your answers in the form $\overline{\mathbf{u}}+\overline{\mathbf{v}}$ where $A \overline{\mathbf{u}}=\overline{\mathbf{0}}, A \overline{\mathbf{v}}=\overline{\mathbf{b}}$. If the matrix has a determinant, give the determinant. If the matrix has an inverse, give the inverse. Write down all the E matrices you use to determine the inverse.

1. $A=\left(\begin{array}{cc}2 & -4 \\ 3 & 6\end{array}\right), \overline{\mathbf{b}}_{1}=\binom{1}{a}, \overline{\mathbf{b}}_{2}=\binom{1}{1}$
2. $A=\left(\begin{array}{cc}2 & -4 \\ 3 & 5\end{array}\right), \overline{\mathbf{b}}_{1}=\binom{a}{1}, \overline{\mathbf{b}}_{2}=\binom{1}{-1}$
3. $A=\left(\begin{array}{cc}2 & -4 \\ 1 & 3 \\ -6 & 12\end{array}\right), \overline{\mathbf{b}}_{1}=\left(\begin{array}{l}1 \\ 0 \\ a\end{array}\right), \overline{\mathbf{b}}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$
4. $A=\left(\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & -2 \\ 3 & -6 & 15\end{array}\right), \overline{\mathbf{b}}_{1}=\left(\begin{array}{l}1 \\ a \\ 1\end{array}\right), \overline{\mathbf{b}}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$
5. $\quad A=\left(\begin{array}{ccc}2 & -4 & 6 \\ -1 & 2 & -3\end{array}\right), \overline{\mathbf{b}}_{1}=\binom{1}{a}, \overline{\mathbf{b}}_{2}=\binom{0}{2}$
6. $A=\left(\begin{array}{cccc}3 & -2 & 1 & 0 \\ 1 & -1 & 2 & 1 \\ 2 & -2 & -3 & -2 \\ -3 & 2 & -1 & 1\end{array}\right), \overline{\mathbf{b}}_{1}=\left(\begin{array}{l}1 \\ 1 \\ a \\ 1\end{array}\right), \overline{\mathbf{b}}_{2}=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right)$
7. $A=\left(\begin{array}{cccc}2 & -3 & 0 & 1 \\ -1 & 3 & 2 & 0 \\ 3 & -3 & 2 & 2 \\ 1 & 3 & 6 & 2\end{array}\right), \overline{\mathbf{b}}_{1}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ a\end{array}\right), \overline{\mathbf{b}}_{2}=\left(\begin{array}{c}b \\ -1 \\ 2 \\ 3\end{array}\right)$

Let P, A be invertible matrices. Give formulas for $\left(P A P^{-1}\right)^{n}$ and $\left[\left(P A P^{-1}\right)^{T}\right]^{n}$ for $n \in Z$.

