
MATH 235 CONCEPTS 

 

1) LIMITS 
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| |A B  is the distance A  is from B  
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x a
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

  means if 0 | |x a   is small enough then | ( ) |f x L  is nearly 0 

 

lim ( )
x a

f x L


  means if x a , but the distance x  is from a  is small enough then the 

distance ( )f x  is from L  is nearly 0. 

 

SOME LIMIT RULES 
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2) CONTINUITY 

 

The function f  is continuous at x a  if and only if lim ( ) ( )
x a

f x f a


  

The function f  is continuous if it is continuous at each number in its domain. 

 

SOME CONTINUITY RULES 

 

Suppose c  is a number, the function f  is continuous at x a  , the function g  is 

continuous at x a  and the function p  is continuous  at ( )x f a  

 

(1) cf  is continuous at x a  (2)  f g  is continuous at x a   
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(3) fg  is continuous at x a  (4)  If ( ) 0g a   then 
f

g
 is continuous at x a  

(5) p f  is continuous at x a  (6) polynomials are continuous  

 

 

If f  is continuous on [ , ]a b  then f  attains a maximum and a minimum value on 

[ , ]a b . 

 

Intermediate Value Theorem: If f  is continuous on [ , ]a b  and ( ) ( )f a y f b   or 

( ) ( )f b y f a   then there is a c  in ( , )a b  so that ( )f c y . 

 

 

3) DERIVATIVES 

 

Let the function f  be defined on [ , ]a b  then the line through ( , ( ))a f a  and ( , ( ))b f b  

is called the secant line and its slope is given by 
( ) ( )f b f a

m
b a





 

 

( ) ( ) ( )f x f x h f x     

 

The difference quotient of the function f  is 
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( )
f f x f x h f x

x
h h h

   
  . 

 

If 
0 0 0

( ) ( ) ( )
lim ( ) lim lim
h h h

f f x f x h f x
x

h h h  

   
   exists then we say the function f  is 

differentiable at x  and write
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The function f  is called differentiable if it is differentiable at each x  in its domain. 

 

SOME DIFFERENTIATION RULES 

 

Let c  be a number, ,f g  be differentiable functions 

 

(1) 0
d

c
dx

  

 (2) ( ) '( ) '( )
d

f g x f x g x
dx

     

(3) ( ) '( )
d

cf x cf x
dx
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(4) ( ) '( ) ( ) ( ) '( )
d

fg x f x g x f x g x
dx

   

 (5) 
2

'( ) ( ) ( ) '( )
( )
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d f f x g x f x g x
x

dx g g x


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(6) Chain Rule: ( ) ( ( )) '( ( )) '( )
d d
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dx dx
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(7) 1 1 1 1( ) ( ( )) '( ( ))[ ]'( ) 1
d d
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dx dx

       

(8) 1r rd
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dx

   

(9) 1[ ( )] [ ( )] '( )r rd
g x r g x g x

dx

   

(10) sin cos
d

x x
dx

   

(11) cos sin
d

x x
dx

   

 

Differentiable functions are continuous, but a continuous function may not be 

differentiable. 

 

Mean Value Theorem: If the function f  is differentiable on ( , )a b  and continuous on 

[ , ]a b  then there is a number ( , )c a b  so that
( ) ( )

'( )
f b f a

f c
b a





. (The slope of the 

secant line is equal to at least the slope of one tangent line. The secant line is parallel 

to a tangent line.)  

 

If '( ) 0f a   then f   on an interval containing a . If '( ) 0f a   then f   on an 

interval containing a . 

 

4) INTEGRALS 

 

Let the function f  be defined on [ , ]a b  then *

1

( )
n

j j

j

f x x


  is called the Riemann Sum 

of f  on [ , ]a b  with partition 0 1 2 1{ ... }n nP a x x x x x b        . 

 

If *

|| || 0
1

lim ( )
n

j j
P

j

f x x




  exists then we say f  is integrable on [ , ]a b  and we write 

*

|| || 0
1

( ) lim ( )
nb

j j
a P

j

f x dx f x x




  . 

 

 

 



 4 

SOME INTEGRAL RULES 

 

If f  is continuous on [ , ]a b  then f  is integrable on [ , ]a b . 

 

If '( ) ( )F x f x  on [ , ]a b  then ( ) ( ) ( )
b

a
f x dx F b F a  . 

 

If ( ) ( )
x

a
F x f t dt   on [ , ]a b  then '( ) ( )F x f x . 

 

If f  is continuous on [ , ]a b  then ( ) ( ) ( ) ( )( )
b

a
f x dx F b F a f c b a     for some 

( , )c a b . 

 

( ) ( )  if and only if '( ) ( )f x dx F x c F x f x   . 

 

 

Let c  be a number, ,f g  be integrable functions 
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b
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