Numerical Differentiation Homework

READ Chapter 8 in Part II of Algorithms.pdf

p.141 Exercise 1

1. Approximate $f'(x_0)$ using forward, backward and centered differences at x_0 for the given h. Approximate $f''(x_0)$ using centered differences at x_0 for the given h. Give the theoretical error estimates for each. Verify your numerical results against the theoretical results.

(a)
$$f(x) = \sin^2 x$$
, $x_0 = 1$, $h = \frac{1}{4}$ (b) $f(x) = e^{-\sin x}$, $x_0 = \frac{\pi}{2}$, $h = \frac{1}{8}$
(c) $f(x) = x \ln(x^2 + 1)$, $x_0 = 0$, $h = \frac{1}{8}$

2. Fill in the following table

x	У	FD	BD	CD	2 nd CD
-1	2	$=\frac{1-2}{-0.5-(-1)}$			
-0.5	1		$=\frac{1-2}{-0.5-(-1)}$		$=\frac{1-2(1)+2}{(0.5)^2}$
0	1				
0.5	-1				
1	-2				

Compare your results in the table with $f'(x_0)$ and $f''(x_0)$ for the Newton divided difference interpolating polynomial for these points.